
FOR THE
IB DIPLOMA @
PROGRAMME —

Computer Science
Paul Baumgarten

loana Ganea

Carl Turland

[5] hachette
LEARNING

www.hachettelearning.com

Together we unlock every learner’s unique potential

With over 150 years of experience in education, there's one

thing we're certain about. No two students learn the same way.

That's why our approach to teaching begins by recognising

the needs of individuals first. With no awarding body to

consider, we're truly independent in the support we offer. Our

mission is to allow every learner to fulfil their unique potential

by empowering those who teach them with all the necessary

knowledge, tools and resources. From our expert courseware,

assessment and professional development to our educational

tools that make learning easier and more accessible for all, we

provide solutions designed to maximise the impact of learning

for every teacher, parent and student.

Formerly known as Hodder Education, we are a global

publisher operating in over 150 countries. Our parent company

is Hachette Livre, the world’s third-largest trade publisher.

FOR THE
IB DIPLOMA
PROGRAMME

Computer Science
Paul Baumgarten

loana Ganea

Carl Turland

B hachette
LEARNING

Although every effort has been made to ensure that website addresses are correct at time of going to

press, Hodder Education cannot be held responsible for the content of any website mentioned in this

book. It is sometimes possible to find a relocated web page by typing in the address of the home page

for a website in the URL window of your browser.

Hachette UK's policy is to use papers that are natural, renewable and recyclable products and

made from wood grown in well-managed forests and other controlled sources. The logging and

manufacturing processes are expected to conform to the environmental regulations of the country

of origin.

To order, please visit www.HachetteLearning.com or contact Customer Service at education@hachette.

co.uk / +44 (0)1235 827827.

ISBN: 978 1 0360 0900 7

© Paul Baumgarten, loana Ganea, Carl Turland 2025

First published in 2025 by Hachette Learning,

An Hachette UK Company

Carmelite House

50 Victoria Embankment

London EC4Y 0DZ

www.HachetteLearning.com

Impression number M987654321

Year 2029 2028 2027 2026 2025

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication

may be reproduced or transmitted in any form or by any means, electronic or mechanical, including

photocopying and recording, or held within any information storage and retrieval system, without

permission in writing from the publisher or under licence from the Copyright Licensing Agency

Limited. Further details of such licences (for reprographic reproduction) may be obtained from the
Copyright Licensing Agency Limited, www.cla.co.uk

Cover photo © sdecoret - stock.adobe.com

Typeset in ITC Berkeley Oldstyle 5td 10/14pt by DC Graphic Design Limited, Hextable, Kent

Printed and Bound in Great Britain by Bell & Bain Ltd, Glasgow

A catalogue record for this title is available from the British Library.

Paper | Supporting
responsible forestry C eyt

E.fssc(o:é FSC™ C104740 CLAZ e

Contents

Introduction v

How touse thisbook vi

About the authors viil

A CONCEPTS OF COMPUTER SCIENCE 1

. A1 Computer fundamentals 1

A1.1 Computer hardware and operation. 2

A1.2 Data representation and computer logic. 24

A1.3 Operating systems and control systems. 67

Al4 Translation 103

. A2 Networks. 111

A2.1 Network fundamentals. 112

A2.2 Network architecture 127

A2.3Data transmissions 136

A2.4Network security 144

. A3 Databases 167

A3.1 Database fundamentals 168

A3.2Database design. 174

A3.3 Database programming 186

A3.4 Alternative databases and data warehouses 195

. A4 Machinelearning 205

A4.1 Machine learning fundamentals 206

A4.2 Data preprocessing.o et o e e 215

A4.3 Machine learning approaches. 223

Ad.4 Ethical considerations 274

Contents

o)

o)

®)

o)

o)

o)

B COMPUTATIONAL THINKING AND
PROBLEM SOLVING. 281

B1 Computational thinking........... 281

B1.1 Approaches to computational thinking 282

B2 Programming 295

B2.1 Programming fundamentals (part 1) 296

B2.3 Programming constructs. 31

B2.1 Programming fundamentals (part2) 333

B2.2 Data structures. 342

B2.4 Programming algorithms 358

B2.5 Fileprocessing 378

B3 Object-oriented programming (OOP) 393

B3.1 Fundamentals of OOP forasingleclass. 394

B3.2 Fundamentals of OOP for multiple classes. 417

B4 Abstractdatatypes (ADTs)......................... 453

B4.1 Fundamentals of abstract datatypes. 454

CASESTUDY 481

INTERNAL ASSESSMENT. 493

Acknowledgements. 537

Glossary 538

Index 547

Computer Science for the IB Diploma

Introduction

Welcome to Computer Science for the IB Diploma, written to meet the criteria of the new

International Baccalaureate (IB) Diploma Programme Computer science guide (published 2025,

first exams May 2027). This text addresses the full scope of the syllabus, both the Standard

Level and Higher Level components, and caters for both the Python and Java programming

language options.

It has been said that computer science is a modern-day superpower, and rightly so. It has

a profound impact on society and has driven much of the transformational change we

have experienced in recent years. It has advanced fields as diverse as agriculture, finance,

manufacturing, health and medicine, transportation, educarion and global communications.

Contemporary living has been forever altered thanks to changes enabled by advances in

computing. This impact will only continue to grow exponentially in the years ahead, and the

opportunities are limited only by your imagination.

‘We hope you are excited about the journey ahead and ready to embrace the challenges and

opportunities it brings!

= The “In collaboration with IB” logo signifies that the content of this book has been reviewed by

@L the IB to ensure it fully aligns with the current IB curriculum and offers high-quality guidance

and support for IB teaching and learning.

Introduction

4 Definitions appear

throughout in the

margin to provide

context and help

you understand the

language of Computer

Science. There is also a

glossary of all the key

terms at the end of

the book.

How to use this book

The following features of this book will help you consolidate and develop your understanding

of Computer Science, through concept-based learning:

These are key prompts from the IBDP Computer science guide that

frame each section with the purpose of promoting inquiry.

SYLLABUS CONTENT

» This coursebook follows the order of the contents of the IB Computer Science Diploma

syllabus, with two exceptions.

[> B2.3is inserted between B2.1 part 1 and B2.1 part 2. This allows us to introduce the

programming fundamentals of selection, loops and functions before B2.2, which

introduces data structures. B2.2 would have been far more theoretical and abstract if we

sought to introduce data structures prior to concepts such as if-statements and loops.

[> B3.1.3 appears after B3.1.5. This allows us to introduce the idea of static methods and

properties after learning how to write code that implements objects.

In both cases, we felt a small reardering created a better flow and provided for a

more practical teaching and learning sequence. The alternative would have resulted

in attempting to teach programming ideas before introducing the concepts on which

they depend.

» At the beginning of each chapter is a list of the content to be covered, with all

subsections clearly linked to the content statements, and showing the breadth and depth

of understanding required.

(.-Key information

These boxes highlight essential knowledge needed for the examination.

Approaches to learning (ATL), including learning through inquiry, are integral to IB

pedagogy. These activities are designed to get you to think about real-world applications

of Computer Science.

(;Common mistake

These boxes detail some common misunderstandings and typical errors made by students, so that

you can avoid making the same mistakes yourself.

GTop tip!

This feature includes advice relating to the content being discussed and tips to help you retain

the knowledge you need. These boxes also include advice on how to approach various common

programming scenarios — whether in programming code or in written form, such as in the exams

(®Tok
Links to Theory of Knowledge allow you to develop your critical-thinking skills and deepen your

understanding of Computer Science by bringing in discussions about the subject beyond the scope

of the content of the curriculum.

Computer Science for the IB Diploma

@ Linking questions
Each section has a set of linking questions that connect to other parts of the syllabus or TOK.

They are designed to facilitate connections and promote conceptual understanding. The list in

this coursebook is not exhaustive; you may encounter other connections between concepts,

leading you to create your own linking questions

s
s
s
s
s
s
s
s
s
e
n
s
a
s

Self-assessment questions appear throughout the chapters, phrased to assist comprehension

and recall.

Programming exercises appear at the end of chapters. Their purpose is to provide practical,

hands-on experience in applying the concepts and principles of Computer Science to a

programmed solution. Being able to solve exercises so they work on the computer will be

essential to gaining the confidence needed to solve similar problems in exam settings, when you

only have paper and pen to work with.

Finally, these programming exercises will help build your expertise for the internal assessment.

Sample answers to the programming exercises in Sections B2 and B3 can be found at

www.hachettelearning.com/answers-and-extras

Author-written exam-style questions appear at the end of each section. These simulate scenario-

based questions of the breadth and depth that can be anticipated in your examinations. They are

intended to serve as a revision and preparation tool to assist you in identifying areas of strength

and weakness, as well as to refine your problem-solving skills.

It is recommended that you use these practice questions under exam conditions to make the most

of them. Each question has a marks allocation, which also approximates the number of minutes

it should take for you to complete. Once you have completed a batch, check the answers while

the material is fresh (answers can be found at www.hachettelearning.com/answers-and-extras).

Create a log of recurring mistakes for you to review and practise further.

For the programming questions, do make sure you take the time to practise hand-writing your

responses. Typing cade on the computer is very different from hand-writing it, so you want to

have plenty of practice at hand-writing code before your IB examinations. Pay particular attention

to consistency of spelling; use of upper and lowercase; and clear lines of indentation.

“\"‘ International mindedness is indicated by this icon. It explores how the exchange of

“2" information and ideas across national boundaries has been essential to the progress of

- Computer Science and illustrates the international aspects of the subject.

@Tfi%\ The IB learner profile icon indicates material that is parricularly useful to help you towards
/
(\‘\2 ;—%a‘ developing the following attributes: to be inquirers, knowledgeable, thinkers, communicators,
=
= principled, open-minded, caring, risk-takers, balanced and reflective. When you see the icon,

think about what learner profile attribute you might be demonstrating — it could be more

than one.

How to use this book

About the authors

Paul Baumgarten

Paul is a Computer Science teacher who has had a lite-long fascination with all things geeky.

He started tinkering with electronics at age 8 and has been programming since 13, when

he taught himself BASIC. Holding a BSc (Computer Science) from Edith Cowan University

and a Graduate Diploma in Education from University of Western Australia, he has been

teaching Computing since 2006. He moved to Switzerland in 2015, where he began teaching

the International Baccalaureate Diploma programme, and is currently teaching in Hong

Kong. Passionate about promoting diversity in the tech field, he is committed to increasing

representation of women and minorities in Computer Science, believing that societal advances

through technology are only truly possible when the contributions and perspectives of

everyone are included. Beyond teaching, he is an avid science-fiction reader and enthusiast,

particularly relating to space and time travel. He is also the founder of CodingQuest.io, an

annual online programming competition for secondary Computer Science students globally.

loana Ganea

loana Ganea is an experienced educator, having taught Computer Science for over 15 years

in different international environments, such as Romania, Germany, the United Kingdom,

Egypt and Luxembourg. Her passion for Computer Science started at the age of 11 when

her father purchased her very first device and encouraged her to explore both hardware and

software concepts without thinking that something can go wrong, as a computer can always be

replaced. She graduated from the Academy of Economic Studies in Bucharest, Romania, with a

bachelor’s degree in Economic Cybernetics, Statistics and Informatics, specializing in Economic

Informatics, and she obtained a master’s degree in Civil Engineering from the Technical

University of Civil Engineering of Bucharest (Computer Assisted Technologies — Department

of Teacher Training). She is an experienced examiner, moderator and team leader for various

exam boards, and she has collaborated with Oxford Study Courses, offering Computer

Science revision courses for IB DP Computer Science, both Standard Level and Iigher Level.

As an educator, she strives to raise each student’s potential and encourage them to believe

in themselves. She enjoys teaching students to apply their knowledge, so they can face the

challenges of life with confidence, integrity, compassion, creativity and love of peace.

Carl Turland

Originally from Chessington in the United Kingdom, Carl has spent much of his career

abroad, teaching in Indonesia, Thailand and Switzerland. lle began his professional journey

as a programmer for Sky Television in the UK, and now serves as the Head of Design and

Computer Science at the International School of Lausanne. Carl holds an TIND in Computer

Science from Nottingham Trent University, and earned a BA (Hons) in Information

Communication Technology with QTS from Brighton University. He was one of the pioneering

teachers of the reintroduced Computer Science curriculum in the UK in 2016 and, during

that time, helped establish his school as a UK lead in the subject, while contributing to the

Compute-1T series (Hodder Education). He later moved abroad to help establish Computer

Science programmes at several schools, before joining the International School of Lausanne,

where he is now in his sixth year. Carl continues to innovate within the curriculum,

expanding into robotics. Outside of the classroom, he is passionate about running, travelling,

spending quality time with his wife and young daughter, and cheering on his beloved Crystal

Palace football team from the comfort of his sofa.

Computer Science for the IB Diploma

A1 Computer

fundamentals

Computer hardware
and operation

What principles underpin the operation of a computer, from low-

level hardware functiondlity to operating systems’ interaction?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A1.1.1 Describe the function and interaction of the main central processing unit (CPU)

components

A1.1.2 Describe the role of a graphics processing unit (GPU)

A1.1.3 Explain the difference between the CPU and the GPU (HL)

A1.1.4 Explain the purposes of different primary memory types

A1.1.5 Describe the fetch, decode and execute cycle

A1.1.6 Describe the process of pipelining in multi-core architectures (HL)

A1.1.7 Describe the internal and external types of secondary memory storage

A1.1.8 Describe the concept of compression

A1.1.9 Describe the different types of services in cloud implementation Y
Y
V
Y
Y
Y
Y
Y
Y

A1.1.1 Function and interaction of the main
central processing unit components

B What is the central processing unit?

The central processing unit (CPU) is often referred to as the “brain” of the computer. It is a
M A central processing

unit (CPU) from above and

underneath critical component that carries out the majority of the processing inside a device.

RAM The CPU is made up of two main units: the control unit

(CU) and the arithmetic logic unit (ALU).

Control unit (CU)

The control unit directs the operations of the processor.

It is responsible for the fetch—decode—execute cycle,

managing all three operations and directing the

lo
gi
c
un
it

computer’s memory, ALU and input/output devices to

Ar
it

hm
et

ic

respond appropriately.

Arithmetic logic Init (ALU)

This unit is responsible for performing arithmetic and logic

control bus

Co
nt
ro
l

un
it

operations. These include basic arithmetic operations such

as addition, subtraction, multiplication and division, as well

as logic operations including AND, OR, XOR and NOT.

PC program counter

MDR memory data register

MAR memory address register

AC accumulator

B A model of the CPU

@ A1 Computer fundamentals

Hl What are registers?
Registers are very small amounts of storage that are available directly on the CPU to hold

temporary data that the CPU may be working on. The registers are instruction register (IR),

program counter (PC), memory address register (MAR), memory data register (MDR) and

accumulator (AC).

Instruction register

‘When an instruction is fetched from memory, it is held in the IR within the CPU. This register

holds the instruction that is currently being executed by the CPU.

Program counter

The PC holds the address of the next instruction that is to be fetched from memory. Once the

instruction has been fetched, the PC updates to point to the next instruction that will be needed.

Memory address register

The MAR holds the memory address that is currently being fetched. The content from the PC

is copied to the MAR, and the MAR provides this address to the memory unit, so that data and

instructions can be read from or copied to that location.

Memory data register

This holds the data that has been fetched or is about to be written to the memory address

currently in the MAR.

Accumulator (AC)

This stores the intermediate arithmetic or logical results produced by the ALU.

Bl What are buses?
Buses are a critical component of the computer system, as they transfer data between various

devices, including the CPU, memory, storage and peripherals. Buses have widths that are

measured in bits. The bigger the width of the bus, the more data it can transmit at one time.

There are three main types of buses: control bus, data bus and address bus.

Control bus
The control bus is used to transmit command and control signals from the CPU to other

components of the system, and vice versa. Due to the need for signals to be sent and received,

Bidirectional bus: this bus is bidirectional. Some of the signals that would be transmitted via the control bus are
a bus that can transfer i an: read / write operations, interrupt requests, clock signals for synchronization and status signals
data in both directions.

from hardware components.

Data bus
The data bus carries the data being processed between the CPU, memory and other

peripherals. The width of the data bus is important for determining the amount of data it can

transfer at one time. Common data bus widths are 8, 16, 32 and 64 bits. As data needs to be

read from and written to memory, data buses are usually bidirectional.

Address bus

The address bus is used to transmit the address that is to be read [rom or written to in

memory. The width of this bus determines the memory capacity of the system. For example, a

32-bit address bus can address 2** memory locations.

A1.1 Computer hardware and operation

B What are cores?
CPUs come in a number of different configurations. These include single-core processors,

multi-core processors and co-processors.

Single-core processors

This CPU has a single processing unit, meaning it can only handle one task at a time. These

are more often found in low-end computers or older machines. They are adequate for simple

tasks that do not require heavy multitasking. Single-core processors are able to run more than

a single application at a time, but the CPU has to be shared between these applications, which

can impact performance.

Multi-core processors

A CPU with multi-core processors has two or more cores that can run multiple instructions

simultaneously. These are often referred to as dual-core (two processors), quad-core (four

processors), hexa-core (six) or octa-core (eight). Their performance is significantly faster

than single-core processors and they are ideal for multitasking, gaming and servers. However,

software has to be written to take advantage of these extra cores. Older software that does not

do this would likely run at a similar speed as on a single-core processor.

Co-processors

A co-processor is a special type of pracessor that has a specific job to support the main CPU.

These are built with a distinct purpose to achieve optimal performance compared to a general-

purpose CPU. Tasks are offloaded by the CPU to the co-processor so they can run in parallel,

enhancing the system’s performance. Examples of co-processors are graphics processing units

(covered in Section A1.1.2), audio processors and digital signal processors (DSPs), which are

used in telecommunications and image compression.

(;Common mistake

A common mistake is thinking that adding more cores to a CPU always makes it faster in a

straightforward way — like assuming a dual-core CPU is twice as fast as a single-core, or a quad-

core is four times faster. This isn't always true, because the speed increase depends on how well

the software can use multiple cores at the same time. Many programs aren’t designed to take

full advantage of multiple cores, so the extra cores may not make a noticeable difference. Other

factors, such as memory speed and how the CPU is designed, also affect how fast it can run. So,

just having more cores doesn't automatically mean much faster processing.

What is the primary function of the arithmetic logic unit (ALU) in a computer’s CPU?

How does the control unit (CU) direct the operations of the CPU?

Why is the program counter (PC) important for executing a sequence of instructions?

What roles do the data bus and address bus play in the functioning of the CPU?

m
o
h

W

N

=

How does the memory address register (MAR) work in conjunction with other CPU

components to access memory?

6 How do multi-core processors differ from single-core processors in handling tasks?

A1 Computer fundamentals

M A graphics processing

unit (GPU)

Shaders and

textures: techniques

used in 3D rendering to

apply effects, lighting

and details to models.

Parallel processing:

the ability of the

GPU to perform

many calculations

simultaneously due to its

highly parallel structure.

Matrix and vector

multiplications:

fundamental operations

in machine learning and

graphics that involve

complex mathematical

calculations.

A1.1 Computer hardware and operation

A1.1.2 Role of a graphics processing unit

A graphics processing unit (GPU) is a specialized electronic circuit designed to accelerate the

rendering of images, videos and animations by performing rapid mathematical calculations.

Initially developed to handle the demanding graphics workloads of video games and visual

applications, GPUs have evolved to play a crucial role in various fields beyond graphics

rendering. Their structure, consisting of thousands of small, efficient cores, allows them

to process multiple tasks simultaneously, making them exceptionally well-suited for

computationally intensive applications. This capability has led to their widespread adoprion

in scientific research, machine learning, artificial intelligence and cryptocurrency mining. By

offloading these intensive tasks from the CPU, GPUs enhance overall system performance,

enabling faster and more efficient data processing and visualization.

B Graphics processing

M Video game graphics

GPUs are designed with a highly parallel structure, enabling them to perform many

calculations simultaneously. This makes them exceptionally well-suited for rendering the

complex and resource-intensive graphics seen in modern video games and applications. They

also handle the application of shaders and textures to 3D models, which includes lighting,

shading and texture mapping, enhancing the realism of the scene.

H Video processing
GPUs assist in the decoding and encoding of video files, making processes such as playback,

streaming and editing more efficient and faster. This is particularly helpful for those working

with high-resolution video files of 4k or higher.

B Artificial intelligence and machine learning
GPUs were originally created for graphical processing; however, in the early 2000s, researchers

and engineers began to recognize their potential for handling general-purpose calculations,

including those required for machine learning and Al The shift towards using GPUs for this

was largely due to their ability to perform many simple calculations simultaneously, and

because many GPUs can be run in parallel. Many Al models rely heavily on matrix and vector

multiplications, and GPUs far outperform a CPU when trying to process these quickly.

A
T
N
O
 T
H

4 Deep learning:

a subset of machine

learning that uses an

artificial neural network

to imitate the design

of the human brain to

find generalizations

in complex data

that can be used for

decision-making.

Proof of work: a

consensus mechanism

requiring cryptominers

to solve complex

problems to add a new

block to the blockchain.

This realization gained momentum as machine learning models, especially deep learning

models, became more complex and required significant computational power for training,

By the mid-2000s, GPUs had become essential tools in the field of AT and machine learning,

transforming how data scientists and researchers approached problems, significantly reducing

the time it took to train complex models.

B Blockchain and cryptocurrency mining

M The cryptocurrency boom — at its peak in November 2021, the total market capitalization of

cryptocurrencies reached approximately $3 trillion

In 2010, the use of GPUs for Bitcoin mining surged as miners discovered that GPUs

significantly outperformed CPUs in solving cryptographic puzzles, such as finding the nonce

in the hashing algorithm for the proof-of-work system. This realization led to a dramatic shift

towards GPU mining. The cryptocurrency boom between 2017 and 2021 further escalated the

demand for GPUs, resulting in skyrocketing prices and global shortages.

As of 2023, this demand had reduced somewhat and prices of GPUs were becoming more

stable. This was for a number of reasons:

B The volarility and reduced profitability of cryptocurrency mining had led to less demand

for GPUs, specifically for mining purposes.

® Big manufacturers had increased production to meet the demands.

m Application-Specific Integrated Circuits (ASICs), which are specifically designed for

mining, had largely replaced the use of GPUs in many mining operations.

1 What is the role of a graphics processing unit (GPU) in a computer?

How do GPUs enhance the performance of video games and video processing tasks?

3 Why have GPUs become essential in fields such as artificial intelligence, machine learning

and cryptocurrency mining?

A1.1.3 Differences between the

CPU and the GPU (HL)

The central processing unit (CPU) and the graphical processing unit (GPU) are both core

components of modern computers. They are designed differently, which is why they are used

for different kinds of tasks. The CPU is great for handling various jobs, but the GPU is better for

doing the same job many times on a lot of data at once.

A1 Computer fundamentals

H Design philosophies
CPUs are generally called “general-purpose processors” because they can handle many types

of tasks. They are designed to run the operating system, process user input and manage

programs. CPUs are good at tasks where decisions need to be made quickly, and where

different types of work are being done at the same time.

GPUs are specialized processors because they tocus on specific types of tasks. They are

made for processing large amounts of data in parallel. This means they can work on many

calculations at the same time. For example, GPUs are used to process images and videos

because they can work on thousands of pixels at once.

B Core architecture
The CPU has only a few cores, but these cores are very powerful. Each core can handle many

different instructions, but it works best when doing one task at a time. This makes the CPU

very good for such tasks as running the operating system, where quick responses are needed.

CPUs also have features including branch prediction (where the CPU tries to guess what will

happen next) and out-of-order execution (where the CPU can work on tasks that are ready

before others).

The GPU has many smaller cores. These cores are not as powerful as the CPU cores, but there

are thousands of them, and they all work at the same time. This is why the GPU is very good

for tasks such as rendering 3D images, where many similar calculations need to happen at

once. The GPU’s architecture is designed to work on large sets of data all at the same time.

Bl Memory access and power efficiency
The CPU and GPU access memory differently. The CPU uses a smaller, high-speed memory

cache to get data quickly. This is useful when the CPU needs to access small amounts of data

many times, such as when running programs or handling user inputs.

The GPU uses its own special memory called VRAM (video RAM). VRAM has a very high

bandwidth, meaning it can move large amounts of data at once, such as images and videos.

Rendering: the

process of generating

an image from a model

by means of computer

programs.

However, the GPU uses more power because it must process a lot of data at the same time,

especially when rendering videos or running complex simulations.

B Comparison of central processing units (CPUs) and graphics processing units (GPUs)

with a focus on handling

graphics, rendering images,

video and animations

thousands of small cores that are

well-suited for tasks that can be

run in parallel. While each core

is not as powerful as a standard

CPU core, the high number of

cores allows them to perform

a large number of calculations
simultaneously, making them

perfect for graphical processing

Processor | Processing Architecture Functionality

CPU It is a general purpose CPUs generally have fewer Allows the user to switch

processor, capable of handling | cores. General user devices between multiple tasks

many different tasks. It tend to have between 4 and and applications. This

executes the instructions of 8 cores; however, there are makes it ideal for running
computer programs, invalving | some advanced CPUs that now | the operating system

operations such as arithmetic, | have 64 cores or mare. Each and general software

lagic and controlling input / core is very versatile, making it applications.

output (I/Q) operations, as capable of handling complex

directed by the operating computations that require

system. sequential processing.

GPU It is a specialized processor, Composed of hundreds or Suited for tasks that require

simultaneous processing

of large blocks of data,

such as rendering images,

video processing and deep

learning applications.

A1.1 Computer hardware and operation

A
I
N
O
 T
H

4 Vertex and pixel

data: data used by

the GPU to render 3D

objects and images.

Frame: a single image

in a sequence of images

that makes up a video or

animation.

(;Key information

To summarize, CPUs are better for tasks that require high-speed, complex decision-making and

versatility. GPUs are better when the same operation needs to be performed on many data points

simultaneously. This means that for tasks such as gaming, video editing and computational research

(Al and machine learning), GPUs often significantly outperform CPUs.

B How the CPU and GPU work together to increase
video-game performance

When playing video games, the CPU and GPU work together to deliver a seamless and

immersive experience. The CPU handles the game’s core logic, including rules, physical

calculations and AT behaviour. It processes the inputs from the player (processing the

outcomes of their actions and updating the game state accordingly). The GPU’s primary role

is to render the game’s visuals. It processes vertex and pixel data to draw images on to the

screen, including 3D objects, textures and effects such as lighting and shadows.

Run benchmark software on your device to see your overall system performance. There are many

options out there that you can search for; https://novabench.com and www.userbenchmark.com

have free versions.

Typical scenario

1 Player input: The player presses a key to move a character. The CPU processes this input,

updates the character’s position based on game physics and determines the new game state.

2 Data preparation: The CPU prepares the new position and state data and sends it to the GPU.

3 Rendering: The GPU updates the frame with the character’s new position, applies lighting

and shading and renders the scene.

4 Display: The rendered frame is displayed on the screen, providing immediate feedback ro

the player.

How do the CPU and GPU work together to enhance video-game performance?

Why is a GPU better suited than a CPU for tasks such as video rendering or Al computations?

What are shaders and textures, and how do they contribute to the rendering process

handled by the GPU?

A1.1.4 Purposes of different
primary memory types

Hl Memory types
The primary memory of the computer stores data and instructions that the CPU needs in

order to process tasks. Primary memory includes several different types: RAM (random access

memory), ROM (read-only memory), caches and registers (covered in Section A1.1.1). These are

all types of primary memory, meaning they are used directly by the CPU.

A1 Computer fundamentals

RAM

RAM (random access memory) holds instructions and data

for programs that are currently running. For example,

when you open an app on your phone or computer, it loads

into RAM so that is can be accessed quickly by the CPU.

RAM is volatile, meaning that it loses its contents when

the power to the computer is turned off. This is why, when

playing a game, you lose your progress unless you save the

game (which is then stored in secondary memory).

One real-world example of using RAM is in smartphones,

which use RAM to switch quickly between apps. When you

leave an app, it stays in the RAM, so you can return to it

quickly without reloading it from scratch.

ROM

ROM (read-only memory) is used for storing instructions

that are very rarely modified. ROM is used for the BIOS

(basic input / output system) of the computer, which is

located on the motherboard. The BIOS main role is to

initialize and test the system hardware components on

startup, and to load the operating system (OS) software

v. a ' AT ;\\ = ; from the secondary memory storage into the RAM, ready

M Read-only memory (ROM) attached to a motherboard for the CPU to fetch, decode and execute the instructions.

@ Volatile: a type of ROM is non-volatile memory, meaning it does not lose its contents when the compurer does

memoary or storage that not have power. While ROM is “read only”, meaning it cannot easily change its data, most

loses its data when the modern computers use flash memory, which allows for updates and reprogramming. This

power is turned off. allows motherboard companies to update their software when required.

A real-world example of using ROM is in smartphones, where ROM stores the operating

system and core applications, which do not change unless you perform an update. This ensures

that your phone can boot up reliably every rime.

Cache (L1, L2 and L3)

CPU Cache memory Main memory Secondary memory

M The order a CPU goes through when trying to retrieve data

Cache memory is small, but provides high-speed access to the CPU compared to the RAM.

It acts as a buffer between the CPU and the slower RAM, storing frequently used data

and instructions.

There are three types of cache: L1, L2 and L3, each with different sizes and speeds. The closer

to the CPU, the faster it is.

A1.1 Computer hardware and operation (E_

Cache hit: when the

CPU requests data and

it is found in the cache

memaory.

Cache miss: when

the CPU requests data

and it is not found in

the cache memory,

necessitating retrieval

from slower main

memory or storage.

B L1 cache is located directly on the CPU, making it the fastest type of cache. It can be

accessed almost instantly due to its location. However, it is also the smallest, often only

a few kilobytes in size (32KB to 128KB per core). Each CPU core usually has its own

L1 cache, which is typically split into two sections: L1i to store instructions and L1d to

store data.

B L2 cache can either be on the CPU, like L1, or situated very close to the CPU. L2 cache

is larger than L1 and can be up to several megabytes in size (256KB to 2MB per core),

providing more storage for frequently used instructions. It is faster than L3, but slightly

slower than L1, though it still significantly speeds up processing by reducing the need to

fetch data from the slower RAM.

® L3 cache is often located the furthest from the CPU chip. L3 cache may be shared on

multiple-core CPUs, whereas L1 and L2 are usually exclusive to a single core. It is the largest

of the three, and can be up to tens of megabytes in size (2MB to 64MB shared across all

cores). It is the slowest of the three types of caches, but is still significantly faster than RAM.

The terms cache hit and cache miss are used to describe the efficiency of the CPU’s cache

memory when retrieving data. A cache hit is the ideal scenario, where the CPU requests data

and it is found in the cache memory. A cache miss means it was not found, necessitating

retrieval from the slower main memory (RAM) or even slower storage (SSD / HDD).

The percentage of hit rate determines the efficiency and effectiveness of the cache. A low

percentage means the system would suffer more from latency, where the data has to be fetched

from elsewhere, hindering pertormance speed. Systems with a larger cache size will generally

perform better, as well as systems with more intelligent prefetching techniques that can predict

which data will be needed soon and load it into cache ahead of time.

(;Top tip!

Imagine an onion with its layers representing the levels of cache:

B L1 cache is the smallest and fastest, like the very centre of the onion, where everything is

tightly packed and closest to the core of the CPU.

B L2 cache is slightly larger and slower, like the next layer out - still close to the centre, but

not as quick to access as the very core.

B L3 cache is the largest and slowest, like the outer layers of the onion. It's still important, but

it takes a bit longer to get to, just like how the CPU takes a bit more time to access data in

L3 cache compared to L1 and L2.

Optimizing CPU performance with cache

The cache plays a critical role in ensuring that the CPU can access data as quickly as possible.

When the CPU finds the searched-for data in the cache (a cache hit), the data can be processed

very quickly. However, when there is a cache miss, the CPU has to look for the data in the

slower memory, which causes a delay.

Imagine you are playing a video game on a computer. The CPU frequently checks the L1, 1.2

and L3 cache to find the data it needs to run the game smoothly. The game’s core functions,

such as player controls and game logic, might be stored in the L1 cache, while the less

frequently accessed data, such as background textures, may be in the L3 cache. The layering

system helps to ensure that the game runs smoothly, without interruptions.

A CPU with a larger cache or more advanced prefetching (a technique where the CPU predicts

what data it will need and loads it into cache ahead of time) has fewer cache misses and

performs better overall.

A1 Computer fundamentals

Execute Fetch

Decode

M The fetch-decode—

execute cycle

1 What is the main purpose of RAM in a computer system, and why is it considered volatile?

2 How does ROM differ from RAM in terms of its function and volatility?

3 Why is cache memory important for CPU performance, and how do the different levels

of cache memory (L1, L2, L3) vary in terms of speed and size?

4 What happens during a cache hit and a cache miss, and how do these events impact

systern performance?

A1.1.5 The fetch-decode-execute cycle
The fetch—decode—execute cycle, also known as the “instruction cycle”, is the fundamental

process that a CPU uses to execute instructions. The cycle consists of three main stages:

1 TFetch: The CPU fetches an instruction from the memory.

2 Decode: The CPU interprets the instruction and prepares the necessary operations to execute it.

3 Execute: The CPU performs the actions required by the instruction.

B Little Man Computer
An easier way to see these stages carried out in more detail is to use an educational CPU model

known as Little Man Computer, which you can search for online or use the one available

here: https://peterhigginson.co.uk/Imc. This model uses assembly language — a simple set of

instructions, each represented by three letters, which is stored as a three-digit code in the

memory. The full set of instructions is:

Instruction | Code Description

INP 901 Input a value and store it in the accumulator

QuT 902 Output the value from the accumulator

DAT N/A Used to define data values directly in memory at the point of declaration, often
for constants or variables

LDA 5XX Load the value from the specified memory address into the accumulator

STA 3XX Store the value in the accumulator at the specified memory address

ADD 1XX Add the value from the specified memory address to the accumulator

SUB 2XX Subtract the value from the specified memory address from the accumulator

HLT 000 Halt the program

BRA BXX Branch (jump) to the specified memory address

BRZ TRX Branch to the specified memory address if the accumulator is zero

BRP 8XX Branch to the specified memory address if the accumulator is positive

Enter the following program into the left-hand column and assemble into RAM. You will see

the three-digit representation for each instruction stored at a memory address on the right. For

example, LDA 4 has been stored as 504 in memory address 0.

LDA 4

ADD

STA 5

HLT

DAT 23

DAT 12

A1.1 Computer hardware and operation

Your LMC should look like this:

000 J 000§ oo J oo Jf 0o | 000 Jf 000 Jf ovo Jf 000 Jf 000 |

0vo | 000§ 000 J§ 000 Jf 0oa | 000 | 000 I oo 000 Jf 000

000§ 000 Jf 000 J§ ooo J§ o0 i ooo I 0oo Jf coo I 0o I ooo

000§ 000 000 J§ 000 J§ 000 Jf 000) 000 | 000 Jf 000 J 000

i 000 000§ ovo i 0oo Jf 000 | 000 Jf 000l 000§ oo Jf 000 |

mmmmmmmmmm

" Irmmmmmmmmmm

| 000 000§ voo I ooo I oo oo Jf 000l ooo oo Jf 00 |

I-Irmmmmmmmmmm

;

e e o

M Peter Higginson's LMC model

First cycle

Click step.

1 TFetch: The PC (program counter) is currently set to 0, so the instruction at memory

location 0 is fetched (504) by opening the 0 address in RAM using the address bus and

fetching the instruction on the data bus. The control bus sends a read signal to initiate this

process. 5 is stored in the instruction register and 04 in the address register.

‘While this happens, you will see the PC gets incremented to 1 via the ALU, ready for the

next instruction.

2 Decode: Once the instruction is fetched, the CPU decodes the instruction. The control unit

uses the control bus to co-ordinate this process. The instruction stored in the instruction

register is 5, which decodes as “load into the accumulator”. The address register 04

indicates the address of the data to load.

3 [Execute: The command is then carried out. Address 4 is opened on the address bus, and

the control bus sends the appropriate signals to retrieve the data (23) from that location on

the data bus and store it into the accumulator.

Second cycle

Click step.

1 TFetch: The CPU now uses the PC to know which instruction to fetch next: 1 is currently

stored. Address 1 is opened, and the instruction 105 is fetched. The control bus

sends a read signal to initiate this. 1 is stored in the instruction register and 05 in the

address register.

The PC is incremented to 2 by the ALU.

2 Decode: The instruction 1 is decoded as “add to accumulator”; the address register is the

address of the data to add (5). The control unit uses the control bus to co-ordinate this.

3 Execute: Address 5 is opened, the data 12 is fetched and both the accumulator

(currently 23) and the fetched data (12) are passed to the ALU. The result of 23 + 12 is

stored in the accumulator (35).

A1 Computer fundamentals

Third cycle

Click step.

1 TFetch: The PC is currently 2, so the instruction at memory address 2 is fetched (305). The

control bus sends a read signal to initiate this. 3 is stored in the instruction register, and 05

is stored in the address register.

The PC is incremented to 3 via the ALU.

8
]

Decode: The instruction 3 decodes as “store accumulator to address” and the address

register gives the location of where to store the data (05). The control unit uses the control

bus to co-ordinate this.

w

Execute: Memory address 5 is opened via the address bus, and the control bus sends the

appropriate signals to send the accumulator contents down the data bus and store them at

address 5 (overwriting the current data).

Fourth cycle

Click step.

1 Fetch: The PC is currently 3, so the instruction at memory address 3 is fetched (000). The

control bus sends a read signal to initiate this. 0 is stored in the instruction register, and 00

is stored in the address register.

The PC is incremented to 4 via the ALU.

8
]

Decode: The instruction 0 decodes as “halt”. The control unit uses the control bus to signal

this operation.

3 Execute: The computer halts all operations and ends the program.

(‘Common mistake

A common mistake is assuming that the program counter (PC) gets updated after the execute

stage of the fetch—decode—execute cycle. The PC is usually updated during or immediately after

the fetch stage, so it points to the next instruction in memory before the current instruction

is even decoded or executed. This ensures that the CPU always knows where to find the next

instruction in the sequence.

Write an LMC program to:

1 input two numbers, add them, and output the result

input a number and output whether it is positive or zero

calculate the sum of the first five natural numbers

input two numbers and output the larger one

v
i

B

w

N

input three numbers and output them in ascending order.

1 What are the main steps in the fetch—decode-execute cycle, and why is this cydle

fundamental to CPU operations?

2 How does the CPU use the address, data and control buses during the

fetch—-decode-execute cycle?

3 Why is the interaction between memory and registers crucial during the fetch phase of

the CPU cycle?

A1.1 Computer hardware and operation

A
T
N
O
 T
H

4 Multi-core

architectures: systems

with multiple CPU

cores on a single

chip, allowing parallel

execution of instructions

and tasks.

A1.1.6 The process of pipelining in
multi-core architectures (HL)
Pipelining is a powerful technique used in multi-core architectures to enhance CPU

performance by overlapping the execution of multiple instructions. To understand this

concept, imagine a carwash service that processes cars through several stages: initial wash,

detailed cleaning, rinse and drying. Each stage takes five minutes.

M A carwash team operating in parallel execution to get the job done faster

In a non-pipelined operation, each car must complete all stages before the next car begins:

Car

A initial detailed rinse drying

wash cleaning

B initial detailed rinse drying

wash cleaning

The total time it takes to process two cars is 5 x 8 = 40 minutes. So the time to clean one car is

40/ 2 = 20 minutes.

The problem with this system is that, once car A has had the initial wash, that stage is then left

idle, waiting for car A to complete, before car B enters. This is not efficient and, if we continue with

this system, the only way we can improve the operation is to increase the speed of each stage.

It is the same situation with the performance of a CPU, where we are limited by the speed of

the hardware, and improving this can be very expensive. Being more efficient with what we

have is more beneficial.

In a pipelined solution, as soon as car A finishes a stage, car B enters that stage:

Car

A initial wash detailed cleaning | rinse drying

B initial wash detailed cleaning | rinse drying

The total time it takes to process two cars is 5 x 5 = 25 minutes. So the time to clean one car is

25/2 = 12.5 minutes.

In this pipelined solution, rather than one stage sitting idle until the cycle is complete, the

moment it is finished with car A, car B enters thar stage.

Bl Design of a basic pipeline
In a pipelined processor, the pipeline consists of multiple stages or segments situated between

an input end and an output end. Each stage performs a specific operation, and the ourput of

one stage becomes the input for the next. Intermediate outputs are held in interface registers,

also known as “latches” or “buffers”. All stages and interface registers are synchronized by a

common clock, ensuring co-ordinated operation across the entire pipeline.

A1 Computer fundamentals

In the CPU, the fetch—decode—execute cycle is divided into distinct stages:

1 Fetch: The instruction is retrieved from memory.

2 Decode: The instruction is interpreted to understand the required operation.

3 Execute: The operation is carried out.

4 Memory access: Any necessary data is read from or

Cycle written to memory.
1 2 3 4 5

L] D000
; s T D Rather than measuring performance in minutes, as in

O \i] - L/ U the carwash example, pipeline performance in CPUs is

L
L

‘Write back: The result is written back to the

CPU register.

m [] [} [] () () measured in cycles. To manage the five stages mentioned,
A C

—
i ™ DO0RDEQD i mrssmimmnicisoyors m . [of instructions. A well-optimized pipeline can achieve

“ [l [] l l] A close to one instruction per cycle, maximizing the

\ ___/) CPU’s performance by reducing idle times and ensuring

M Example of a pipeline cycle continuous instruction processing.

the CPU is constructed with a five-stage instruction

pipeline, ensuring continuous and efficient processing

B How cores in multi-core processors work independently and
in parallel

In multi-core architectures, each core can independently execute its own pipeline of

instructions. This is similar to having multiple carwash teams, each capable of processing

cars simultaneously but independently. They are also capable of parallel execution when

dealing with larger, more complex tasks, where each team completes a part of a larger task to

improve execution time. This combination of pipelining and parallelism significantly boosts

computational efficiency, enabling modern processors to handle complex and resource-

intensive tasks more effectively.

Independent execution

Each core in a multi-core processor has its own set of pipelines, allowing it to fetch, decode,

execute and write back instructions independently of the other cores. This independence

means that, even if one core is handling a computationally intensive task, other cores can

continue to execute their tasks without waiting for the first core to finish. This increases

overall efficiency and utilization of the CPU resources.

Consider our carwash with multiple bays:

Team 1 (Core 1): Car A undergoes initial wash — detailed cleaning — rinse — drying

Team 2 (Core 2): Car B undergoes initial wash — detailed cleaning — rinse — drying

While Team 1 is drying car A, Team 2 might be rinsing car B. Both bays operate independently.

Parallel execution

Parallel execution takes the concept further, by allowing multiple cores to work on different

parts of a single large task or multiple tasks simultaneously. For instance, in a multi-threaded

application, different threads can be scheduled on different cores, with each core processing its

thread in parallel. This drastically reduces the time needed to complete complex computations.

Imagine a large car that needs washing, detailing and interior cleaning. Multiple teams (cores)

can work on different sections of the car at the same time:

Team 1 (Core 1): Washes the exterior

Team 2 (Core 2): Details the interior

A1.1 Computer hardware and operation

A
T
N
O
 T
H
 Team 3 (Core 3): Cleans the wheels and undercarriage.

Each team works in parallel on different parts of the same car, drastically reducing the overall

time required to complete the job.

GTop tip!

Think of pipelining like an assembly line in a factory. Each stage in the pipeline handles a

different part of the process and, once a stage finishes its task, it passes the work to the next

stage and immediately starts on a new task. This way, multiple instructions are being processed

simultaneously, just at different stages. In a multi-core architecture, imagine multiple assembly lines

(cores) working in parallel, each running its own pipeline. This set-up greatly increases efficiency

because more tasks are completed in less time, and the CPU can handle multiple instructions or

even different programs at one time.

1 What is pipelining and how does it improve performance?

How does a non-pipelined CPU differ from a pipelined CPU in terms of instruction execution?

3 What are the stages of a basic instruction pipeline, and how do they function together in

a CPU?

4 How do multi-core processors use pipelining and parallel execution to improve

computational efficiency?

A1.1.7 Internal and external types
of secondary memory storage

B Internal storage

Hard disk drive (HDD) and solid state drive (55D)

cache

controller

NAND flash

memory

spindle

actuator arm

actuator axis

M The internals of an HDD and an S5D

A1 Computer fundamentals

Hard disk drives (HDD) and solid state drives (SSD) are the most typical storage solutions for

personal computers. HDDs are older technology but are still often used, especially in non-

mobile devices, as they are relatively cheap compared to the amount of storage they offer.

HDDs utilize a spinning magnetic disk to read / write data. They are suitable for storing large

volumes of data, such as media files, backups and documents, where speed is not so critical.

SSDs have no moving parts. They use flash memory to store data, offering high-speed data

access and durability. This makes them very popular in portable devices such as laptops and

tablets. They are ideal for operating systems, software applications and games due to their fast

read / write speed, which enhances the overall system performance.

M HDD vs 55D

Feature HDD (hard disk drive) SSD (solid state drive)

Storage technology | Magnetic storage with spinning disks and read / write heads | Flash memory with no moving parts

Speed Slower read / write speeds (generally 50-150 MB/s) Faster read / write speeds (generally 200-500 MB/s)

Durability Maore prane to physical damage due to moving parts Maore durable; resistant to physical shock

Noise Produces noise due to moving parts Silent operation

Power consumption | Higher power usage due to mechanical parts Lower power consumption

Cost Generally cheaper per GB More expensive per GB

Capacity Awailable in larger capacities {up to several TB) Typically available in smaller capacities (up to several TB,

but at a higher cost)

Weight Heavier due to mechanical components Lighter

Heat generation Generates more heat due to moving parts Generates less heat

There is another form factor for SSDs that is currently popular and offers various advantages.

M.2 SSDs look like a stick of chewing gum. They are very small and thin, and rake up a lot

less space than a standard SSD. M.2 NVMe SSDs are also faster than 2.5” SATA SSDs and are

considered easier to install — you just slot them into the motherboard and use a single screw to

keep them in place.

B M.2 55D

eMMC (Embedded MultiMediaCard)

In low-cost devices, such as entry-level smartphones and budget laptops, where all the benefits

of S5Ds are not essential, eMMCs are a popular choice. They are also a type of flash storage

that utilizes NAND flash memory. They are soldered directly on to the motherboard of the

device. While the capacity and speed do not match a standard SSD, their performance is

adequate for basic computing needs and simple applications.
B Two eMMCs

A1.1 Computer hardware and operation

M An external 55D

RAID (Redundant

Array of Independent

Disks): a data storage

technology that

combines multiple

physical drives into a

single logical unit to

improve performance,

provide redundancy and

ensure data protection.

B External storage

Hard disk drive (HDD) and solid state drive (S5D)

As external storage solutions, both HDD and SSD are popular choices. Their performance and

comparison are identical to the internal versions. Which is used depends on the requirements

of the user. If you require quick file transfers, backups and a portable solution that is less likely

to be impacted by being carried around, SSDs are the best choice. If you need to do extensive

backups, store media files or transport large files, but speed is less critical, you may decide an

1IDD is the better option.

Optical discs and optical drives

M From left to right: CD, DVD and Blu-Ray

Optical drives that read / write optical discs, such as CDs, DVDs or Blu-Rays, are becoming

less popular, but are still a consideration for external media storage. The cost of an optical disc

is low compared to an HDD or SSD and, while their read / write speeds may be slower, they are

sufficient for data archiving and playback. However, the discs are prone to scratches, especially

if they are not stored correctly, and they require an optical drive to read and write to them, and

these are becoming less common in devices these days.

Memory cards

Memory cards are compact storage devices often used in cameras, smartphones and other

portable devices. They are ideal for expanding storage in mobile devices and for storing photos

and videos in cameras, using NAND flash memory. They come in multiple sizes, such as SD,

microSD and CompactFlash, catering to different devices and space requirements. They are

known for their durability — they are resistant to physical shocks, extreme temperatures and

water, making them ideal for portable devices. Their read / write times are generally slower

than SSDs, but outperform those of optical discs.

Network Attached Storage (NAS)

NAS is a dedicated file storage connected to a network that allows multiple users to access

data. It is often used in homes or businesses for centralizing data storage, file storage

and data backup. NAS is usually made up of multiple HDDs or SSDs configured in RAID

(Redundant Array of Independent Disks) configuration. It is normally connected to the

network via Ethernet, and runs a lightweight operating system designed for file storage, and

the management and sharing of files. As it uses multiple HDDs or S5Ds, its capacity is usually

high, and it is possible to expand the system further by adding additional drives.

A1 Computer fundamentals

B Memory cards W NAS storage solution

1 What are the primary differences between an HDD and an SDD in terms of performance

and durability?

2 Why might a low-cost device, such as an entry-level smartphone, use eMMC storage

instead of an SSD?

3 What advantages do NAS (Network Attached Storage) systems offer for home or

business environments?

4 How do memory cards compare to optical discs in terms of durability and data

storage capabilities?

A1.1.8 Describe the concept of compression
Compression is the process of encoding information using fewer bits than the original

representation. Making file sizes smaller has two main advanrtages: it takes less room on

secondary storage and it is faster to transfer across a network. There are two main types of

compression: lossless and lossy.

Il Lossless vs lossy compression
Lossless compression is when data is compressed to a smaller size, but can be restored back to

the original without any loss of information. This is important for files such as text files and

databases, where a loss of information would be critical. This technique works by identifying

* Statistical and eliminating statistical redundancy within the data, and this process can be reversed

redundancy: the when needed.

repetition of information

within a data set that

does not contribute to

its unigueness.

Lossy compression generally ourperforms lossless compression when it comes to file sizes;

however, it reduces files by permanently eliminating certain information. This information

is redundant or less critical data, resulting in a compressed version that is not identical

to the original but is, ideally, indistinguishable from the original to human senses. Lossy

compression is commonly used for compressing multimedia files such as images, audio and

video, where some loss of quality is acceptable in exchange for significantly reduced file sizes.

A1.1 Computer hardware and operation

This can be seen in the images below. While it may be pretty ditficult to visually distinguish

the difference in quality, the lossy version uses 50 per cent less data than the original.

® .
* "

Original Lossless Saved Lossy Saved

1.73 MB 1.58 MB 9% 886 KB 50%

B Run-length encoding (RLE)
Run-length encoding is an effective lossless data-compression technique used to reduce the

size of files containing many consecutive repeated characters.

For example, take this string:

AAAAABBBCCDAA

RLE looks for “runs” where a character is repeated. In the example above, we have five runs:

AAAAABBB CCDAA

Omnce RLE has identified these, it encodes the run by replacing it with a pair: the character that

repeats and the number of repetitions. So, the runs above become:

5A3B2C 1D 2A

The encoded string is then stored as:

SA3B2CID2A

If we assume each letter stores 8 bits of information, the initial data is 13 x 8 = 104 bits, or

13 bytes.

After compressing with RLE, the data is 10 x 8 = 80 bits or 10 bytes: a 23 per cent reduction

in size.

RLE is straightforward to implement and it is very effective for data with lots of repetitions,

such as simple graphics and certain types of text files. RLE was often used on fax machines,

which would send text documents via the telephone line. This was because they contained a

lot of white space, which meant RLE could achieve compression ratios of up to 8:1. However,

for data that does not contain many repeated characters, like a portrait photograph, RLE may

not be very effective and, in some cases, may even increase the file size.

Create an RLE application that has two options: compress or decompress.

The compress option should receive a string and output the encoded version using the

RLE algorithm.

The decompress option should do the opposite.

A1 Computer fundamentals

Low-frequency

data: correspond

to slow changes in

pixel values, such as

broad areas.

High-frequency

data: correspond to

rapid changes in pixel

values, representing
fine details, edges

and textures.

A1.1 Computer hardware and operation

H Transform coding

Image Construct Forward Quanti Symbol Compressed

(N x N) nxn transform y| AR "l encoder image
sub-images

M The stages of transform coding

Transform coding is a form of lossy compression often used in JPEG image compression or

MP3 audio compression.

Using JPEG compression as an example:

B Transform coding takes an image of N x N size and sections it into smaller sub-images of

size n x n.

B Then the forward transform is carried out on each of the sub-images. The forward transform

can use different algorithms, depending on the type of file compression, but for JPEGs

DCT (discrete cosine transform) is used. This takes the image data from the spatial domain

(pixel values) to the frequency domain. The output breaks the sub-image down into low-

and high-frequency coefficients.

B These frequency coetficients are then passed to the quantizer. This step significantly

reduces file size by simplifying the frequency coefficients obtained from the DCT. The

purpose of quantization is to reduce the precision of high-frequency components (the

fine details) rather than low-frequency components. This is because the human eye is less

sensitive to high-frequency data loss compared to low-frequency detail. The extent of the

quantization determines the compression level and the quality of the final image.

B The final step of transform coding is the symbol encoder. This is where the quantized

coefficients are further compressed using entropy coding techniques. This runs through

three further algorithms to reduce the file size by efficiently representing the frequency of

occurrence of each symbol. The algorithms used at this stage are (in this order):

1 Zigzag scan

2 Run-length encoding (RLE)

3 Tuffman coding.

Once this stage has finished, the final compressed image is complete.

What are the two main advantages of compressing files?

Explain the difference between lossless and lossy compression.

How does run-length encoding (RLE) work, and in what types of files is it most effective?

B

W

N

-

Describe the process of transform coding in JPEG image compression and explain why it

is considered a lossy compression method.

A1.1.9 Types of services in cloud implementation
Cloud computing has revolutionized how organizations manage and deploy IT resources,

offering flexible and scalable solutions to meet diverse business needs. There are three

primary cloud service models: Software as a Service (SaaS), Platform as a Service (PaaS) and

Infrastructure as a Service (IaaS). Each one provides distinct levels of control, flexibility and

management solutions.

4 Middleware:

software that connects

different applications,

allowing them to

communicate and share

data. It helps different

parts of a computer

system work together

smaoothly.

B Software as a Solution (Saa$)
Saa$ delivers software applications over the internet. Users can access these applications

through web browsers without needing to install, maintain or update the software locally.

SaaS provides a cost-effective and convenient solution for businesses and individuals,

offering a wide range of applications from productivity tools to customer-relationship

management systems.

Saa$ allows users to access their software from anywhere, on any device, as long as they have

an internet connection. This eliminates the need for complex software installations. Many SaaS

providers charge a subscription fee, which is often less than the cost of purchasing software

licences. Additionally, updates and new features are automatically added by the provider,

ensuring that users always have the most up-to-date version of the software.

However, SaaS software relies on the user having an internet connection; without it, they

cannot run the software, unlike locally installed software. Data security is also a concern, as

users rely on the provider’s security measures to protect sensitive data.

Example

Google Workspace is an example of SaaS. This suite provides productivity tools, including

Gmail, Google Docs and Google Drive, used by businesses and educational institutions for

communication, collaboration and storage.

B Platform as a Service (PaaS)
PaaS provides a cloud-based platform that allows developers to build, test and deploy

applications without managing the underlying infrastructure. PaaS includes tools and services to

facilitate application development, such as databases, middleware and development frameworks.

PaaS accelerates software development by allowing developers to focus on coding rather than

infrastructure management. It also makes it easier and cheaper to scale hardware as the user

base increases. However, this solution can lead to vendor lock-in, making it difficult to move

applications to different platforms and offering less control over the hosting environment.

Example

Microsoft Azure App Service is an example of PaaS. It is a platform for building, deploying

and scaling web apps and APIs, used by developers to create scalable and reliable applications

without managing the underlying servers.

B Infrastructure as a Service (laaS)
laaS provides virtualized computing resources over the internet, such as virtual machines,

storage and networks. This allows businesses to rent IT infrastructure instead of buying and

managing physical servers.

Unlike Paa$, IaaS gives users full control over their virtual machines and networks. This

reduces the need for upfront investment in hardware and allows businesses to rent solutions

at a lower initial cost using a subscription model. IaaS is also scalable, making it easy to adjust

resources as the user base grows. However, laaS requires more technical knowledge than Paas,

as users must manage their own devices and secure their own data and applications.

Example

Amazon Web Services (AWS) EC2 is an example of TaaS. Businesses use AWS EC2 to create

and manage virtual servers, providing the flexibility to run applications without owning

physical hardware.

A1 Computer fundamentals

1 What is Software as a Service (SaaS) and how does it differ from traditional

software installation?

Explain how Platform as a Service (PaaS) benefits software developers.

3 Why might a business choose Infrastructure as a Service (laaS) over purchasing

physical hardware?

Note: All the exam practice questions are representative of those that will be found on Paper 1

for the International Baccalaureate Diploma in Computer Science.

1 Describe the function of the arithmetic logic unit (ALU). 2]

2 Outline the role of the program counter (PC). 2]

3 Explain the advantages of multi-core processors compared to single-core processors. [3]

4 Describe how the architecture of a GPU differs from a CPU, and why it is better suited for

tasks such as video rendering. 3]

5 Compare the processing power of a CPU and a GPU in handling complex computations. [4]

6 Explain the role of L1 cache in a computer system. 2]

7 Describe the fetch-decode—execute cycle that a CPU uses to process instructions. [4]

8 Explain the concept of pipelining in multi-core processors. [3]

9 Describe the differences between solid state drives (SSD) and hard disk drives (HDD). (4]

10 Describe the method of lossy compression and give an example of its use. 3]

A1.1 Computer hardware and operation

Data representation

and computer logic

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A1.2.1 Describe the principal methods of representing data
y
v
w
y

A1.2.2 Explain how binary is used to store data

A1.2.3 Describe the purpose and use of logic gates

A1.2.4 Construct and analyse truth tables

A1.2.5 Construct logic diagrams

A1.2.1 Principal methods of representing data

T

"N

W The Analytical Engine, conceived by Charles Babbage in the

19th century

M The Setun computer, developed in 1958

Binary (base-2) is the language for modern-day computers;

however, this was not always the case. When developing

early computers, several number systems were trialled.

Charles Babbage, the inventor of the Analytical Engine,

used decimal for his inventions. This seemed a logical

choice as people already commonly used base-10.

The ternary system (base-3) was also explored. The Setun

computer, developed in the Soviet Union in 1958, used this

system. Over 50 of these were produced for educational

and scientific institurions to help explore the benefirs of

ternary logic in computing. Despite its innovative

approach, the practical challenges and the widespread

adoption of binary logic eventually led to its replacement.

Other scientists and inventors also explored quaternary

(base-4) and other number systems. However, practical

implementations of these systems were rare due to the

increased complexity in hardware design and the limited

benefits compared to binary.

Modern computing ultimately settled on binary (base-2) as

the primary number system. The base-2 system represents

two possible states: 1 or 0. This is in contrast to the number

system we are all comfortable with, the decimal system

(base-10), which has ten possible states: 0 to 9. The binary

system is particularly well-suited to represent the state of

electrical switches within a computer system: on (1) and

off (0). This simplicity reduces hardware complexity and

enhances reliability.

Binary reduces the complexity in hardware design because

digital electromics, such as transistors, naturally operate

in binary mode. Transistors act as switches that can be

A1 Computer fundamentals

Noise: unwanted

electrical disturbances

that can affect the

integrity of signals

being processed by a

computer; this noise is

not related to sound,

but to variations in

voltage or current

that can disrupt the

accurate transmission

and processing of

digital data.

Bit: binary digit; a

single digit, either 1 or 0.

4 Byte: 8 bits.

(;Common
mistake

When seeing the

number 11111111,

a common mistake

is to say this is 256.

However, remember

that while there

are 256 number

possibilities, 255 is

the largest number

we can represent in 1

byte (as 0 can also be

represented).

A1.2 Data representation and computer logic

turned on or off, aligning perfectly with the binary system'’s two-state logic. Additionally,

Boolean algebra, the mathematical framework for logical circuit design and operation, enables

straightforward implementation of complex operations using simple logic gates with binary

inputs: 1 (on / rue) or 0 (off / false).

The increased reliability of binary systems stems from their use of only two states. Small

variations in signal strength do not affect data integrity as much as in systems using larger

bases, making binary more robust in noisy environments.

As all data on a computer system is stored in binary, we need systems to represent numerous

types of data, such as integers, strings, characters, images, audio and video, in binary form.

H Representation of integers in binary
To represent numbers in binary, it is useful to remember the basics of our decimal system

(base-10).

In the decimal system, as we count, we start with a single digit and increment it by 1 until we

reach 9. After 9, we introduce a new digit to the front to represent larger numbers. Let’s break

down the decimal number 1024:

1000s 100s 10s 1s

1 0 2 4

This can be expressed as:

(1 x1000) + (0 x 100) + (2 x 10) + (4 x 1) = 1024

Each decimal place value increases by a multiple of 10 as we move to the left because we are

working in base-10.

Binary, and other base systems, work in a similar way but, instead of 10 possible states per

digit, binary has only two (0 and 1). Consequently, each digit increases by a multiple of 2. Let’s

break down the binary number 0110:

8s 4s 2s 1s

0 1 1 0

This can be expressed as:

0x8)+(1xPD+1Ax2)+O0OxD=6

In this example, we have no 8s, one 4, one 2 and no 1s. Adding 4 + 2 gives us the decimal

(base-10) equivalent of the binary (base-2) number 0110. To clearly denote whether

we are showing a binary or decimal number, we usually put the base as a subscript, to

avoid confusion:

0110,=6,,
‘When working with computer systems, we usually deal with 8-bit binary numbers. A bit can

be defined as a “binary digit”, and 8 bits is equivalent to 1 byte. If the number does not require

8 bits to represent it, we usually pad out the extras with 0s. For example, the decimal number

33 would be represented as:

128s 64s 32s 16s 8s 4s 2s 1s

0 0 1 0 0 0 0 1

This means that with 8 bits, we can represent 256 different numbers, from 0 to 255. If we

want to represent larger numbers, we need more bits to represent this.

(.-Top tip!

When converting to

and from binary, it is

always a good idea to

write the digit place

values down first.

Trying to remember

these in your head can

lead to silly mistakes.

128 64 32

16 8 4

2 1

When referring to bits and bytes, a lowercase “b” is used to represent bits and an uppercase “B”

is used to represent bytes. We then use a prefix system as the numbers increase.

There are two types of prefixes when referring to bits and bytes: one for base-10 (e.g. kilo,

mega, giga) and another for base-2. There was a time when base-10 prefixes were also used for

base-2 quantities due to their similarity (e.g. 1024 is close to 1000). However, the confusion

this generated led to calls for change. To address this, in 1999 the IEC introduced new prefixes

(e.g. kibi, mebi, gibi) specifically for base-2 multiples (1024, 1,048,576, 1,073,741,824).

Kibibyte Mebibyte Gibibyte Tebibyte Pebibyte Exbibyte Zebibyte

KiB MiB GiB TiB PiB EiB ZiB

1KiB= 1 MiB = 1GiB= 1TiB= 1PiB= 1EB = 1ZiB=

1024 bytes 1024 KiB 1024 MiB 1024 GiB 1024 TiB 1024 PiB 1024 EiB

Kilobyte Megabyte Gigabyte Terabyte Petabyte Exabyte Zettabyte

KB MB GB TB PB EB ZB

1KB= 1MB= 1GB= 1TB= 1PB= 1EB= 1ZB=

1000 bytes 1000 KB 1000 MB 1000 GB 1000 7B 1000 PB 1000 EB

Bits and byte notation are worth knowing when dealing with mobile-phone and internet companies.

Download speeds of up to 100Mb/s!

ar

Download speeds of up to 100MB/s!

If the two advertisements above were from two different internet companies, assuming the

cost is the same, which one offers faster speeds and by how much?

Converting binary numbers to decimal

There are two main methods for converting a binary number to decimal: the positional

notation method and the doubling method.

Positional notation method:

This is possibly the most straightforward method, where you assign the place values and sum.

1 Starting from the right, assign the place values for each binary bit.

2 Sum each of the place values that has a 1 underneath it.

For example, to convert 10111011, to decimal:

128 64 32 16 8 4 2 1

1 0 1 1 1 0 1 1

128+32+16+8+2+1=187

Doubling method:

1 Start with the leftmost bit (the most significant bit).

2 Double the current total and add the next bit.

3 Repeat until all bits are processed.

A1 Computer fundamentals

Least significant bit

(LSBY): the rightmost

bit in a binary number,

representing the

smallest value position

(0 or1).

4 Quotient: the result

obtained when one

number is divided by

another, e.g. in the

division of 15 by 3, the

quotient is 5.

(‘Common
mistake

Remember to

construct the

remainders in the

correct order to

format your binary

number. The first

remainder is the least

significant bit (LSB).

A1.2 Data representation and computer logic

For example, to convert 10111011, to decimal:

Step Binary digit Current total Calculation

1 1 1 | Initial value

2 0 2| 1x2+0=2

3 1 5|/ 2x2+1=5

4 1 Mis5x2+1=1m

5 1 23 | NMx2+1=23

e 0 46 | 23x2+0=46

7 1 93 | 46x2+1=93

8 1 187 | 93 x2+1=187

(‘Common mistake

If you use this method, remember to start with the most significant bit (MSB), not the least

significant bit (LSB).

Convert the following binary (base-2) numbers to decimal (base-10):

1 11001010, 4 00011110,

2 01101101, 5 11100001,

3 1011001,

Converting decimal numbers to binary

There are two main methods for converting a decimal number to binary: the division method

and the subtraction method.

Division method:

1 Divide the decimal number by 2.

2 Write down the quotient and the remainder.

The remainder will be either 0 or 1. This represents a digit of the binary number (the LSB

on the first division).

3 Update the quotient.

4 Repeat until the quotient is 0.

5 Construct the binary number (this is read from the remainders from the first to the last).

Tor example, to convert 42, to binary:

Division step Quotient Remainder

4272 21 0

21/2 10 1

10/2 5 0

5/2 2 1

2/2 1 0

1/2] 1

Construct the binary number from the remainders and pad to 8-bits: 00101010,

Subtraction method:

Write down the place values for an 8-bit binary number:

128 64 32 16 8 4 2 1

Starting with the largest place value (128):

1 Try and subtract it from the number you are converting.

[0 If the place value is larger than the number, write a 0 below it.

[0 Ifitis smaller or equal to it, write a 1 and calculate the remainder of the subtraction,

carrying the result to the next place value.

2 Repeat.

For example, to convert 42, to binary:

128, and 64, are larger than 42, so we write 0 below these.

128 64 32 16 8 4 2 1

32, is smaller, so we write a 1 below it and calculate the remainder from the subtraction, the

result of which will carry to the next place value:

42y =32, =10,

128 64 32 16 8 4 2 1

16 is larger than 10, so write a 0

8 is smaller, so write a 1 and calculate the remainder:

1010 - 8m = 210

4, is larger than 2 so writea 0

2,,is equal, so calculate the remainder (0) and write a 1

128 64 32 16 8 4 2 1

0 0 1 0 1 0 1 0

Convert the following decimal (base-10) numbers to binary (base-2):

1 20,
2 87,
3 123,
4 199,
5 250

\Write a binary-to-decimal and decimal-to-binary application in either Python or Java.

A1 Computer fundamentals

4 Debugging tools:

software applications

or utilities used by

developers to identify,

analyse and fix bugs

or issues within a

program by inspecting

code, variables and

execution flow.

4 Memory dump:

a process where

the contents of a

computer's memory

are captured and

saved, typically for the

purpose of diagnosing

and debugging

software issues.

Nibble: 4 bits.

A1.2 Data representation and computer logic

B Representation of integers in hexadecimal
Hexadecimal (often abbreviated as hex) is a base-16 number system that uses 16 distinct

symbols to represent values, rather than the 10 of decimal or 2 of binary. The symbols

include the digits 0 to 9 and then the letters A to T, where A represents 10, B represents 11,

C represents 12, D represents 13, E represents 14 and F represents 15.

Hexadecimal is used with computers for several reasons. The ease of conversion between

binary and hexadecimal is straightforward because each hex digit maps directly to a 4-hit

binary sequence. For example, the binary number 1111 can be represented as F in hex.

Another reason is that it provides a more compact way to represent a binary value. This makes

it much easier for us to read and communicate large binary numbers. This is why you often see

hex used in debugging tools, memory dumps and assembly language programming.

Converting binary numbers to hexadecimal

Converting binary to hexadecimal is a straightforward calculation.

1 Split the binary byte (8 bits) into two nibbles (2 x 4 bits).

2 Calculate the decimal value of these 4 bits.

3 Convert the decimal values into their hexadecimal equivalents and rejoin them.

For example, to convert 01101011, to hexadecimal:

1 Split the byte into 2 nibbles:

0110, 1011,
2 Calculate the decimal value:

6l[} 1110

3 Convert both decimal values to their hexadecimal equivalents and rejoin them:

Convert the following binary (base-2) numbers to hexadecimal (base-16):

1 10101100, 4 00111010,

2 11010110, 5 10011101,

3 11010001,

Converting hexadecimal numbers to binary

Moving from hex to binary is just a reverse of the binary-to-hexadecimal process:

1 Split the two hexadecimal digits.

2 Convert each of them to a 4-bit binary number using the same integer-to-binary method.

3 Join the two 4-bit numbers together to form 1 byte.

For example, to convert F2 _ to binary:

1 Split the two hexadecimal digits:

Flfi 216

2 Convert each of them to a 4-bit binary number using the same integer-to-binary method:

1111, 0010,
3 Join the two 4-bit numbers together to form 1 byte:

11110010,

Convert the following hexadecimal (base-16) numbers to binary (base-2):

1 3F, 4 7C,
2 A9, 5 E2,
3 10,

Converting decimal numbers to hexadecimal

To move berween decimal and hexadecimal is one of the trickier calculations to perform, as

you need to be comfortable with your 16 times table. To convert a decimal number to hex:

1 Divide the decimal number by 16 and record the remainder.

2 Repeat the process with the quotient until the quotient is 0.

3 Form the hex number from the remainders, with the last remainder obtained being the

most significant bit (the number on the lefo).

For example, to convert 254, to hexadecimal:

1 Divide the decimal number by 16 and record the remainder:

254,716, = 15, remainder 14,

quotient = 15,

remainder 14 =T

2 Repeat the process with the quotient until the quotient is 0:

15,716, =0, remainder 15

quotient =0,

remainder 15 =T

3 Form the hex number from the remainders, with the last remainder obtained being the

most significant bit (the number on the left):

Convert the following decimal (base-10) numbers to hexadecimal (base-16):

142, 4 200,
2 157, 5 123,
3 89,

Converting hexadecimal numbers to decimal

To convert from hexadecimal to decimal:

1 Convert hex digits to their decimal equivalents.

2 Multiply them by 16 raised to the power of its position index, starting from 0 on the right.

3 Sum the results.

For example, to convert 2F to decimal:

1 Convert hex digits to their decimal equivalents:

25=2y

F =15
16 1]

A1 Computer fundamentals

2 Multiply them by 16 raised to the power of its position index, starting from 0 on the right:

21x16'=2x16=32,
15x16°=15x1=15,

3 Sum the results:

32+415=47,,

Add hexadecimal conversion functionality to the binary converter app you created before.

A1.2.2 How b inary is used to store data
The binary system underpins everything from numerical values and textual informarion to

complex multimedia files, ensuring efficient and reliable data processing. In this section, we

are going to discover the mechanisms that are used to store such data as characters, strings,

images, audio and video in binary form.

B Characters and strings
Characters and strings are stored using standardized binary encoding schemes, enabling

consistent storage, retrieval and processing across different systems and applications. The

most common encoding standards are ASCII (American Standard Code for Information

Interchange) and Unicode.

ASCll encoding

The development of ASCII began in 1960 and was officially standardized in 1963. It was

developed because there was no standardized way to encode text characters, which led to

compatibility issues between devices and systems. Each manufacturer used its own proprietary

encoding system, which made it very difficult for devices to communicate with each other.

ASCII was designed to provide a common standard for the interchange of text data.

ASCII initially started out as a 7-bit encoding system, which gave it the ability to represent

128 (27) different characters, which was considered sufficient for most basic text data (letters,

numbers, punctuation and control characters). HHowever, as computing became more global

and applications required support for additional characters, an 8-bit extension to ASCII

was developed, giving it the ability to represent 256 (2%) characters. This was referred to as

extended ASCII, and the new characters were mainly used for Western European languages.

ASCII uses a simple but clever system to represent characters in binary (as long as we are

only considering the Latin (English) alphabet). The first five bits from the right are used to

represent the letter by its numerical place in the alphabet.

Tor example:

01100001, - 1, =
01100010, - 2, = b
01100011, - 3, = c

A1.2 Data representation and computer logic

(;Top tip!

If the first five bits

from the right are

00000 (five zeros), it

is almost certainly a

space (00100000).

If the first three bits

from the left are not

011 or 010, it is likely

to be a punctuation

mark.

The first three bits from the left represent whether it is an uppercase or lowercase letter.

011 = lowercase; 010 = uppercase:

01100001, = a

01000001, A

Convert the following binary back into text to reveal the hidden message.

01000110 01101111 01101100 01101100 01101111 01110111 00100000 01110100 01101000

01100101 00100000 01110111 01101000 01101001 01110100 01100101 00100000 01110010

01100001 01100010 01100010 01101001 01110100

Create an application so that you can send secret messages to your friends.

Write an application that accepts either a string of characters or a stream of binary. It should

either encode the characters using ASCIl and binary or convert the binary back into text.

To make the binary less easy to decode by hand, you could remove all spacing between the

8-bit characters.

Unicode encoding

In the 1960s, the United States and the majority of English-speaking countries had a system

in 7-bit ASCII that worked for the English alphabet. Other non-English speaking countries

had their own unique encoding systems to work with their own languages. When the ASCII

system was increased to 8 bits (extended ASCII), allowing for 256 characters for use in

modern computers, countries did not agree on the same standard. Nordic countries started

using the extra space to encode characters for their own languages, and Japan used four

different systems that were not even compatible with each other. This was not a huge issue

as communication between these systems was rare, but then the internet was launched and

compatibility became very important as more and more information was being shared between

systems in different countries.

In 1991, the Unicode Consortium was created to try and solve this problem. The organization

was established to develop, maintain and promote the Unicode Standard, which provides a

unique number for every character, regardless of platform, program or language. It needed

to create a system that was capable of storing all the characters and punctuation marks from

all the languages in the world, but also wanted it to be backwards compatible with ASCIL At

the time of writing, the current Unicode Standard version 15.0, released in September 2022,

encodes 149,186 different characters. Unicode includes the Latin, Cyrillic, Greek and Arabic

alphabets, and Chinese characters, as well as many others, and also includes emojis and

mathematical and other technical symbols. In Unicode, each letter or symbol is assigned a

unique number, for example:

B A=65

m {L=27721

m & =128169

A1 Computer fundamentals

You can find the numerical representation for any character or symbol using the code below:

Python

Python examples

char a = 'A'

char_han = '{l"

char poo = '&'

Get Unicode code points as integers

code_point_a = ord(char a) # 65

ord(char_han) # 27721

ord(char poo) # 128169

Print integer representations

code_point_ han

code point poo

print (code point a) # Output: 65

print (code point_han) # Output: 27721

print (code point poo} # Output: 128169

Java

public class UnicodeExample {

public static void main(Stringl[] args) ({

// Define characters

char charA = 'A';

char charHan = 'i{';

String charPoo = "&"; // Note: Java uses UTF-16 and

// the emoji is usually a surrogate pair

// Get Unicode code points as integers

int codePointA = (int) chard; // 65

int codePointHan = (int) charHan; // 27721

int codePointPoo = charPoo.codePointiAt (0); // 128169

// Print integer representations

System.out.println("Unicode code point of 'A': " +

codePointd); // Output: &5

System.out .println("Unicode code point of '{i': " +

codePointHan); // Output: 27721

System.out.println("Unicode code point of '&': " +

codePointPoo); // Output: 128169

H

H H
H
H H

H

H

H

1 H H H

H H

Haesessasessssiessatastasitatasanstassanantsnnn sesssssssessassessasesrsansarasnnranannnanns

A1.2 Data representation and computer logic

Basic Multilingual

Plane (BMP): the

maost commonly used

characters and symbals

for almost all modern

languages.

How did they manage this? The story is that it was conceived in a café on the back of a napkin

when Joe Becker (Xerox), Lee Collins (Apple) and Mark Davis (Apple and later Google) met

and designed the encoding scheme in 1987. There are a few different versions of Unicode:

UTF-8, UTF-16 and UTF-32. Each has its own uses:

UTF-8 UTF-16 UTF-32

Variable length | 1-4 bytes per character 2 or 4 bytes per character 4 bytes per character

encoeding

Note Compatibility: backward Surrogate pairs: for Simplicity: easier to process

compatible with ASCII characters outside the because each character is

Basic Multilingual Plane exactly 4 bytes

(BMP), two 16-bit code

units are used

Usage Most commonly used Often used in Windows and | Less common due to higher

encoding on the web and in | Java environments

many applications

storage requirements

Let’s examine UTF-8, the most commonly used encoding system, and understand

its functionality.

Instead of merely expanding the size to accommodate over 100,000 characters, which would

have adversely impacted most online content, a more efficient solution was devised. Iad

all characters been standardized to use 32 bits, each letter in the ASCII system would have

quadrupled in size. This would have resulted in significantly larger documents and web pages,

leading to increased storage requirements and slower transfer times. The system also needed

never to send eight zeros (00000000) in a row, as many older systems would see this as the end

of communication and would stop listening.

So the UTT-8 system kept the ASCII system the same. The letter “A” is encoded as:

01000001 = A

However, if the character needed went beyond the standard ASCII system, “¢” for example,

more than one byte would be required:

11000011 10101001 = ¢

The bits in bold are important. The first three significant bits “110” on the first byte represent

that this character is made up of two bytes in total (a 0 is needed at the end to show when this

information is finished). The second byte starts “10”, which means this is a continuation. If

you remove those 53 bits and then put both bytes together:

00011101001 =233 =¢

Another example is:

11110000 10011111 10011000 10000100 = =

This emoji requires four bytes using the UTT-8 system. The first byte communicates that this

character is made up of four bytes (“11110”) and the next three bytes start with “10”, showing

they are continuation bytes. If we remove that information:

0001 1111 0110 0000 0100 = 128516 = &

UTF-8 has been adopted by the internet as the main character encoding system; however,

it doesn't come without some issues. Due to the variable length, some characters (especially

those from Asian languages or emojis) take more space compared to single-byte encodings.

This can lead to larger file sizes in certain contexts. The processing required to handle

variable-length encoding also requires more complex processing compared to fixed-length

systems such as UTF-32.

A1 Computer fundamentals

Shift cipher: a type Despite these issues, UTF-8 has proved to be a versatile and effective encoding standard that

of substitution cipher, meets the needs of the modern internet. Its backward compatibility, efficiency and broad

where each letter in support make it an enduring choice for encoding text. While it does have some challenges,

the plaintext is shifted particularly with handling non-ASCII characters and variable-length encoding, these are not
a certain number of

positions down or up

the alphabet.

The code below uses a Caesar cipher to encrypt the string that is input using a key. A Caesar cipher is a simple shift cipher,

where each letter is considered to be an integer (a=1, b = 2, ¢ = 3, and so on) and the key is added to this to find the

encrypted letter, for example:

significant enough ever to warrant a wholesale replacement. Therefore, it’s likely that UTF-8

will continue to be the dominant text encoding standard for the foreseeable furure.

5tring input: "Hello”

Key input: 1

Output: fmmp

Python

def caesar cipher encrypt (message, key):

encrypted message = "'

for char in message:

if char.isalpha(): # Check whether the character is a letter

shift = ord("A") if char.isupper() else ord("a") # Determine the

ASCII offset

Shift the character and wrap around the alphabet if necessary

encrypted char = chr((ord(char) - shift + key) % 26 + shift)

encrypted message += encrypted char

else:

encrypted message += char # Non-letter characters remain unchanged

return encrypted message

User input

message = input ("Enter the message to encrypt: ")

key = int(input ("Enter the key (an integer): "))

Encrypt the message

encrypted message = caesar cipher encrypt(message, key)

print (f"Encrypted message: {encrypted message}")

A1.2 Data representation and computer logic

: Java
i import java.util.Scanner;

public class CaesarCipher (

public statiec String caesarCipherEncrypt (String message, int key) {

H StringBuilder encryptedMessage = new StringBuilder();

q for (char ch : message.toCharArray()) ({

if (Character.isLetter(ch)) { // Check whether the character is

// a letter

: char shift;

g if (Character.isUpperCase (ch)) {

shift = 'A'; // Determine the ASCII offset for uppercase

: // letters i

} else {

shift = 'a'; // Determine the ASCII offset for lowercase

i // letters é

}
// Shift the character and wrap around the alphabet if

// necessary

char encryptedChar = (char) ((ch - shift + key) % 26 + shift);

encryptedMessage . append (encryptedChar) ;

sa
re
ss
sn
ss
rs
ss
ss
na
ns

: } else {

encryptedMessage.append(ch); // Non-letter characters remain

] // unchanged

1 return encryptedMessage.toString();

public static void main(String[] args) {

Scanner scanner = new Scanner (System.in);

q // User input

System.out .print ("Enter the message to encrypt: ");

3 String message = scanner.nextLine();

System.out.print ("Enter the key (an integer): ");

int key = scanner.nextInt();

// Encrypt the message

String encryptedMessage = caesarCipherEncrypt (message, key);

1 System.out.println("Encrypted message: " + encryptedMessage) ;

1 After studying how this code works, write the decrypt function for someone who receives an encrypted message.

2 Write a function that is able to brute force an encrypted message so you can identify the key used.

4 Brute force: a method

of breaking a cipher by

systematically trying

every possible key until

the correct one is found.

A1 Computer fundamentals

M The first ever digital image: Russel Kirch’'s son, Walden, in 1957

Analogue: a

continuous signal that

represents varying

physical quantities, such

as sound waves, which

varies smoothly over a

range; digital represents

data in discrete binary

values (0s and 1s),

l Images
In 1957, Russel Kirch scanned an analogue photo of

his son Walden, converting the picture into a digital

file. This was the first ever digital image created. Tt

was a significant milestone in the evolution of visual

technology, revolutionizing the way we capture, store

and manipulate pictures. The development of early

digital cameras and scanners, which enabled devices to

convert light into digital data, started the trend that has

now become commonplace, and the transition from film

to digital has transformed numerous industries, from

photography and medical imaging to telecommunications

and entertainment.

Bitmap images

Bitmap images, also known as “raster” images, are one

of the most fundamental forms of digital graphics. They

reproduce images by using a grid of pixels, with each pixel

assigned a specific colour and intensity.

At the bottom of the page is a bitmap image with an image

resolution dimension of 13x10 (13 pixels wide by 10 pixels

high). Each pixel is “described” using 1 bit of data: either

1 or 0. In this case, 1 = black and 0 = white (a monochrome

image), and the amount of bits used to describe the colour

is known as the “bit depth” or colour depth. So, we have a

13x10 image with a 1-bit colour depth in this example.

To calculate the size of this image, the formula is:

image size = width (pixels) x height (pixels) x colour depth (bits per pixel)

13 x 10 x 1 = 130 bits (or 130/ 8 = 16.25 bytes)

However, in reality, this calculation is not completely accurate, as the image would require

more data to store metadata and other header information. This could include information

such as dimensions, colour depth and other attributes that allow the CPU to read the image

data accurately so it displays the image correctly to the screen.

enabling precise and oc|lo|lo|o|o|lo|lo|oOo|O|O|O|O]|O

error-resistant processing.
. 0 0 0 0 0 0 0 0 0 0 0

Bitmap: a type of

digital image composed ololo olololo olololo

of a grid of pixels, each

holding a specific colour 0|0 00

value, representing the
" . 0 0 0 [4] o] 0
image in a rasterized

format. 0 0

Pixel: short for “picture

element”; the smallest 0 0 ol meyo e 0 0

unit of a digital image or 0 0 olliie IToll o 1o o o

display, representing a

single point in the image olololo 0 olololo

with a specific colour
and intensity. olo|lo|lo|lo|o|lo|o|o|o|o|o]|oO

A1.2 Data representation and computer logic

4 Image resolution:

the number of pixels

contained within a digital

image, typically expressed

as the dimensions (width
x height) in pixels, and

sometimes as the pixel

density (PPI/ DPI) for

print quality.

Colour depth: also

known as “bit depth”;

the number of bits used

to represent the colour

of each pixel in a digital

image, determining the

range and precision

of colours that can

be displayed.

+ Metadata:

information that

describes other data,

providing context and

details about the data's

content, structure and

attributes. In the context

of digital images,

metadata includes such

information as the

image’s dimensions,

colour depth, creation

date, author, camera

settings and other

properties that help

with managing,

understanding and using

the image effectively.

To improve the quality of a bitmap image, we have two options: We can increase the number of

pixels (resolution) or we can increase the colour depth.

Resolution — increasing the number of pixels:

Increasing the number of pixels in a bitmap image increases the image quality. A higher

resolution allows for greater detail and clarity, and images with lower resolutions can lead

to a loss of detail and a pixelated appearance. However, the quantity of pixels is not the only

consideration: the size of the screen they are displayed on is also important. Images with

a higher PPI (pixels per inch) look clearer than those with a lower PPIL. Imagine having an

image with a resolution of 1024x768 shown on your phone compared to on a cinema screen.

The higher PPI on the phone will give a clearer image due to the increased pixel density.

The trade-off for a higher resolution image is larger file size, which can impact storage and

transfer efficiency.

W Common image resolutions

Resolution name Pixel dimensions Common usage

VGA 640 x 480 Early computer screens, basic web graphics

SVGA 800 x 600 Standard computer monitors, web graphics

HD (720p) 1280 x 760 HD video, basic HD television

Full HD (1080p) 1920 x 1080 Full HD video, modern monitors and televisions

2K 2048 x 1080 Digital cinema, some monitors

Quad HD (1440p) 2560 x 1440 High-resolution monitors, gaming, professional use

4K (Ultra HD) 3840 x 2160 Ultra HD televisions, high-end monitors, video

8K 7680 x 4320 Cutting-edge televisions, professional video

Colour depth — increasing the amount of colours:

When we increase the colour depth, it allows for a wider range of colours to be represented,

resulting in more vibrant and accurate images. If an image’s colour depth is low, this can lead

to banding, where gradients appear as distinct steps rather than smooth transitions. However,

just like image resolution, we must also consider the impact of file size for storage and transfer

times. The higher the colour depth, the larger the file size.

To work out the number of colours available, we calculate 2 to the power of the colour depth of

the image; for example, for an image with an 8-bit colour depth:

2%=1256

B Common colour depths

Colour depth

(bits per pixel)

Number of colours Common usage

1 bit 2 Simple graphics, monochrome displays

4 bit 16 Early computer graphics, icons

8 bit 256 GIF images, simple web graphics

16 bit 65,536 High-colour images, some video formats

24 bit (true colour) 16.8 million Standard for most images and video, digital photography

30 bit (deep colour) Over 1 billion Professional photography, high-end monitors and televisions

36 bit Over 68 billion Medical imaging, professional graphics

48 bit Trillions High-end personal applications, detailed scientific imaging

A1 Computer fundamentals

G A+ " AT, A The majority of modern-day screens are 24 bit, allowing for

. 16.8 million colours. They have three lights per pixel: a red,

a green and a blue light, otherwise known as “RGB”, and

have a value range from 0 to 255 (1 byte per colour channel).

This is sufficient for most applications, as most human eyes

can only distinguish between around 10 million distinct

colours. Monitors that go beyond 24 bit are normally only

necessary in professional fields where precision is crucial.

On the left is a high-resolution image. If we zoom in to

the dress on this image, we can see the breakdown of the

individual pixels and the values of the distinct colour

channels. When working with graphics, these values are

often shown in hexadecimal. If we take the top left pixel of

the dress as an example:

R: 216, G: 190, B: 199 = #d8bec7

T

A
R

T
S

T

—

b
T

E
 R
S
 ©

=

R

G

[l
w
G
8
R
G

m
o
w
m

s
o
®
m

«

S e - . AL BTN M A zoomed-in area of the image above, showing the value of

M A high-resolution image with a resolution of 2268 x 4032, a 24- each pixel - created using www.csfieldguide.org.nz/en/interactives/

bit colour depth and a file size of 1.77 MB pixel-viewer

RGB Calculator

rgp(216, 199, 199)

aBbec?

hsl(339, 258, sex)

26

R 28

0

G im

19

L]

M The colour values for the top left pixel of the dress in the photo — created using www.w3schools.com/

colors/colors_rgb.asp

A1.2 Data representation and computer logic

We can also see the impact of lower colour depths on the same image:

M The same image using multiple colour depths: 24 bits to 0 bits - created using www.csfieldguide.org.nz/

enfinteractives/image-bit-comparer

1
A bitmap image uses a colour depth of 3 bits, allowing for eight distinct colours.

How many bits are needed to represent the colours if the bitmap image uses 32 distinct colours?

Raj is creating a bitmap graphic for a game. The image dimensions are 10 pixels wide and

12 pixels tall.

How many pixels are there in total in the image?

Alice is organizing her digital artwork collection that she has created over the years.

While transferring her artwork files to a new cloud storage service, she notices that each

file is larger than she anticipated. This is because, aside from the actual image data, the file

includes extra information necessary for accurate reproduction of the image. What is this

additional information, which contains details about the pixel data, called?

Determine the storage capacity needed for a bitmap image with dimensions of

800 x 600 pixels that supports 512 different colours.

Then, calculate the file size in kilobytes (kB) if the file metadata occupies an additional 25 per

cent of the space. Present your answer as a real number, including the decimal values.

A1 Computer fundamentals

Here are some fun ways to explore images in more depth using Python or Java.

1 Extract and print RGB values.

import java.awt.Color;

import java.awt.image.BufferedImage;

import java.io.File;

import java.io.IOException;

import javax.imageio.ImageIO;

public class ImageToRGB {

public static void main(String[] args) {

try {
// Load the image

BufferedImage image = ImagelIO.read(new File("sample image.jpg"));

// Get image dimensions

int width = image.getWidth();

int height = image.getHeight () ;

// Loop through each pixel

for (int yv = 0; y < height; y++) {

for (int = = 0; x < width; x++) {

// Get the RGB wvalue of the pixel

int pixel = image.getRGB(x, y);

Color color = new Color(pixel);

// Extract the red, green and blue components

int red = color.getRed();

int green = color.getGreen();

int blue = color.getBlue();

// Print the RGB values

System.out.println("Pixel at (" + x + ", " + y + "}: R=" +

red + ", G=" + green + ", B=" + blue);

}
} catch (IOException e) {

e.printStackTrace() ;

pu
——

T T T T T L L T LR T L T T T TT T TRT TP IPTN

A1.2 Data representation and computer logic

For Python, you need to install the Pillow library first. Run this command in your terminal to install the necessary libraries:

pip install pillow

Python

pip install pillow

Use this code to access the RGB values for each pixel

from PIL import Image

Load the image

image = Image.open('sample image.jpg")

Convert the image to RGB mode

image = image.convert ("RGE")

Get the image dimensions

width, height = image.size

Extract and print RGB wvalues

for y in range (height):

for x in range (width) :

pixel = image.getpixel ((x, y))

red, green, blue = pixel

print (f"Pixel at ({x}, {vy}): R={red}, G-{green}, B={blue}")

2 Apply a grayscale filter.

Warning:

This code processes the image pixel by pixel, which means it iterates through every pixel in the image to apply the

grayscale filter. For very large images (e.g. high-resolution photos), this process can be computationally intensive and take a

significant amount of time to complete. Consider testing this code on smaller images first (e.g. 100x100 pixels) to observe

its behaviour before applying it to larger files.

Python
from PIL import Image

Load the image

image = Image.open("sample image.jpg")

Convert the image to RGB mode

image = image.convert ('RGE')

Get the image dimensions

width, height = image.size

Create a new image to store the grayscale result

grayscale_image = Image.new("RGB", (width, height))

Apply a grayscale filter

for y in range (height) :

for x in range (width) :

pixel = image.getpixel((x, y))

red, green, blue = pixel

grayscale = int (0.3 * red + 0.59 * green + 0.11 * blue)

grayscale image.putpixel((x, y), (grayscale, grayscale, grayscale))

Save the grayscale image

grayscale_image.save('grayscale image.jpg")

A1 Computer fundamentals

: try

—
—

import java.

import java.

import java.

import java.

awt .Color;

awt .image.BufferedImage;

io.File;

io.I0OException;

import javax.imageio.ImagelO;

public class ImageToGrayScale {

public static void main(String[] args) {

{
// Load the image

BufferedImage image = ImagelIO.read(new File("sample image.jpg"));

// Get image dimensions

int width = image.getWidth();

int height = image.getHeight () ;

// Create a new image to store the grayscale result

BufferedIimage grayscaleImage = new BufferedImage (width, height,

BufferedImage.TYPE INT RGB);

// RBpply a grayscale filter

for (int y = 0; y < height; y++) {

for (int x = 0; x < width; x++) {

// Get the RGB value of the pixel

int pixel = image.getRGB(x, ¥);

Color color = new Color (pixel);

// Extract the red, green and blue components

int red = color.getRed();

int green = color.getGreen();

int blue = color.getBlue();

// Compute the grayscale value

int grayscale = (int) (0.3 * red + 0.59 * green + 0.11 *

blue) ;

// Create a new Color object with the grayscale value

Color grayColor = new Color(grayscale, grayscale, grayscale);

// Set the new pixel value in the grayscale image

grayscalelmage.setRGB(x, y, grayColor.getRGB());

}
// Save the grayscale image

ImageIO.write (grayscaleImage, "jpg", new File("grayscale image

java.jpg"));
} catch (IOException e) {

e_printStackTrace () ;

3 After studying how the grayscale filter works, are you now able to create your own unique filters?

:
H H
H H
H

A1.2 Data representation and computer logic

4 Amplitude: the

magnitude of change in a

sound wave, representing

the loudness or intensity

of the sound.

4 Sampling: the

process of converting

a continuous analogue

signal into a series of

discrete digital values by

measuring the signal’s

amplitude at regular

intervals.

4 kHz (kilohertz): a

unit of frequency equal

to 1000 cycles per

second, commonly used

to measure the sampling

rate of audio signals.

B Audio
Audio in its analogue form is a continuous signal that represents sound waves through

variations of air pressure. These sound waves can be captured through input devices, such as

microphones, which convert the sound waves into a digital signal, which is stored as binary.

This process involves several steps:

Analogue-to-digital conversion (ADC)

Sound is a continuous analogue signal. An ADC samples the amplitude (loudness) of the

sound at discrete intervals in a process known as sampling. The rate at which this happens is

measured in IHertz (11z) — the higher the Hertz, the more samples are recorded per second. CD-

quality audio uses 44.1 kHz, but professional quality audio is sampled at 48 kHz.

This sample 1s then stored and represented as a numerical value in binary. The precision is

determined by the bit depth. The larger the bit depth, the more possible values that can be

used to describe the sample. For example, the bit depth of CD-quality sound is 16 bit, which

gives 2' or 65,536, values. Professional audio, which uses 24 bit, has 2%, or 16,777,216, values.

A single second of a 44.1 kHz, 16-bit stereo (meaning two channels) audio has:

B 44,100 samples per second

B cach sample represented by 16 bits

m atotal storage need per second of 44,100 samples / second x 16 bits / sample x 2 channels =

1,411,200 bits per second, or 176,400 bytes per second.

Analogue vs digital sound

1.0

—Analogue signal

0.5
L]
-
3

= 0.0+
[
E
<
-0.5+

-1.0 {
T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

1.0 [I —Analogue signal

-2 Digital signal

0.5
@
°
3

= 0.0
[-%

E
<
—0.5

-1.0-

T T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

M The blue continuous waveform represents an analogue signal, which is a smooth and continuous representation of sound. The
digital signal consists of discrete samples taken at regular intervals (sampling rate), illustrating how the continuous analogue signal is

converted into a series of discrete points in digital form.

Storage formats

There are many different types of file formats for storing audio. The most common are WAV,

AIFF, MP3 and FLAC. They mainly differ by whether they are compressed or uncompressed.

Uncompressed formats store the raw binary data, whereas compressed formats use algorithms

to reduce the file size for storage or transmission. Just like with image compression, audio

A1 Computer fundamentals

Stereo: a method

of sound reproduction

that uses two or more

audio channels to create

the perception of sound

coming from different

directions, enhancing

the sense of spatial

depth and dimension.

compression attempts to reduce the file size by removing parts of the audio signal that are

less noticeable to human senses, in this case the ears. There are both lossy and lossless types

of compression used with audio. Lossless algorithms compress the data without any loss of

quality, whereas lossy algorithms permanently remove audio that is less noticeable to the

human ear on the recording.

B WAV (Waveform Audio File Format): uncompressed

AIFF (Audio Interchange File Format): uncompressed

MP3 (MPEG Audio Layer III): compressed (lossy)

FLAC (Tree Lossless Audio Codec): compressed (lossless)

1 What is the main difference between an analogue signal and a digital signal in the context

of audio?

2 What is the process of converting an analogue audio signal into a digital signal called, and

what does it involve?

3 Calculate the storage needed per minute for a 44.1 kHz, 16-bit stereo audio file.

4 Explain the difference between lossy and lossless audio compression and give an example

of each type of format.

Explore audio files further using the code below. This will allow you to analyse the amplitude of

any MP3 file.

You will need to install the following libraries:

B soundfile

H numpy

m matplotlib

B scipy.

Run this command in your terminal:

pip install soundfile numpy matplotlib scipy

Python
1
1
1

import soundfile as sf !

import numpy as np :

import matplotlib.pyplot as plt :

from scipy.fftpack import fft 1

Load the audio file :

samples, sample rate = sf.read("name of file. mp3") :

If stereo, select one channel :

if samples.ndim > 1: :

samples = samples[:, 0] :

Visualize the waveform :

plt.figure(figsize=(12, 6&)) :

plt.plot (samples) :

plt.title("Audio Waveform") :

A1.2 Data representation and computer logic

M Digital video playback is similar to a flipbook: a number of

images that are shown quickly, creating the illusion of motion efficient playback.

plt.xlabel ("Sample Index")

plt.ylabel ("Amplitude")

plt.show()

Perform FFT

spectrum = fft (samples)

frequencies = np.fft.fftfreqg(len(spectrum), 1 / sample rate)

plt.figure(figsize=(12, &))

plt.plot (frequencies|[:len(frequencies)//2],

np.abs (spectrum[:len (spectrum) //2]))

plt.title("Audio Spectrum")

plt.xlabel ("Freguency (Hz)")

plt.ylabel ("Magnitude")

plt.show()

M Video
Videos are made up of various components that are all contained within an encapsulated

container format such as MP4, MKV or AVIL. The components are:

frames (visual data)

audio tracks

metadata

subtitles and closed captions.

Audio is stored as described in the Audio section above,

and metadata and subtitles are stored as text, so this

section will focus only on how the video data is stored.

Video is essentially stored as a sequence of still images,

otherwise known as “frames”. When played in quick

succession (usually 24 to 60 frames per second), these

frames create the illusion of motion. This is very similar

to the technique you may have used to create a flipbook.

The frames are stored and encoded in binary format,

utilizing various techniques to optimize space and ensure

Frames

In their raw form, frames are stored the same as images, with each pixel having a value that

can be represented using a colour model such as RGB. To improve colour efficiency, frames are

often converted from the RGB colour model to a different one such as YUV. This helps with

compression, as this colour model emphasizes luminance (brightness), which the human eye

is more sensitive to than changes in colour detail.

However, we cannot store frames in the same way as we store photos because, in this format,

they would be too large. They need to be compressed, and there are two main techniques used

for this: spatial (intraframe) and temporal (interframe).

A1 Computer fundamentals

Compression techniques

Spatial compression is particularly effective and commonly used for video that has significant

detail variation in each frame. It reduces file size by eliminating redundant information

within each frame, such as colour depth or detail levels. This approach is important for videos

with a lot of detail that may change significantly between frames, such as animations, nature

documentaries and live news broadcasts.

Temporal compression is particularly effective and commonly used for video that has

consistent motion across frames. It reduces file size by eliminating redundant information

between consecutive frames, capturing only the changes or movements from one frame to the

next. As a predictive compression technique, it predicts frame content based on the preceding

and sometimes following frames, only storing the differences. This approach is important for

videos with a lot of detail that may change significantly between frames, such as animations,

nature documentaries and live news broadcasts.

1 What is the role of frames in a video, and how do they create the illusion of motion?

2 Explain the difference between spatial compression and temporal compression in

video storage.

3 Describe how converting video frames from the RGB colour model to the YUV colour

model can improve compression efficiency.

4 Calculate the total storage needed for a 10-minute video with a frame rate of 30 frames

per second, using 24-bit colour depth and a resolution of 1920x1080 pixels. Assume

no compression.

H Different binary methods for storing integers

Unsigned binary

This is the system we covered in Section A1.2.1. This system only represents positive integers

using straightforward binary digits (0s and 1s).

Signed binary

This includes methods for representing both positive and negative integers.

Two’s complement:

Two's complement is a method for representing signed integers in binary, where the most

significant bit (MSB) indicates the sign (0 for positive, 1 for negative). To convert a positive

binary number to its negative counterpart in two’s complement, you first invert all the bits

(change 0s to 1s and 1s to 0s) and then add 1 to the least significant bit (LSB).

For example:

00000101 = +5

Invert the bits

11111010

Add 1

11111011 =5

A1.2 Data representation and computer logic

However, a limitation of two's complement is that, in an 8-bit system, it reduces the range of

representable numbers. Instead of being able to represent 0 to 2553, as with unsigned binary,

two's complement allows for numbers ranging from —128 to +127, effectively halving the

number of positive values that can be represented.

One’s complement:

Ome's complement is a binary representation method for signed integers, where the most

significant bit (MSB) indicates the sign (0 for positive, 1 for negative). To obtain the one’s

complement of a positive number, you simply invert all the bits (change 0s to 1s and 1s to 0s).

For example:

00000101 = +5

11111010 = -5

Unlike two's complement, one’s complement has two representations of the number zero:

positive zero (00000000) and negative zero (11111111). This is one of its main limitarions

and can cause confusion when using arithmetic and logical operations. This means two’s

complement is normally the preferred system to use. Similarly to two’s complement, one’s

complement also has a limited range, representing numbers from —127 to +127.

Sign-magnitude:

Sign-magnitude is a binary representation method for signed integers where the most

significant bit (MSB) serves as the sign indicator, with 0 representing positive numbers and 1

representing negative numbers. The remaining bits represent the magnitude of the number,

like how unsigned binary numbers work.

For example:

00000101 = +5

10000101 = -5

This system also has two representations for zero: positive zero (00000000) and negative zero

(10000000). It also has the same range as one’s complement, from —127 to +127. It is a simple

system but, like one’s complement, is less efficient compared to two’s complement.

Binary-coded decimal

Binary-coded decimal (BCD) is a method of representing decimal numbers where each digit

of the decimal number is encoded separately into its own binary form. Unlike pure binary

representation, which converts the entire decimal number into a single binary sequence, BCD

assigns a 4-bit binary code to each decimal digit (0-9).

For example:

0100 0101 = 45

as 0100 represents 4, and 0101 represents 5

This system is useful where exact decimal representation is crucial, such as financial

applications or digital clocks, as it avoids the rounding errors that can occur in other systems.

However, due to using four bits per digit, more bits are required to store numbers, making it

less space efficient than pure binary representations. Calculations using BCD are also more

complex as they require additional steps to handle carry and overflow, so they are not good

choices for general-purpose computing.

A1 Computer fundamentals

Gray code (reflected binary code)

Gray code is a binary system where two successive values are only allowed to differ by one bit.

That makes this system particularly useful in situations where data integrity during transitions

is important. An example system is a robotic arm where we want to monitor its position. As

the arm rotates, the rotary encoder generates a sequence of binary outputs corresponding

to the arm’s angle. If the encoder used standard binary code, small mechanical vibrations or

inaccuracies could cause multiple bits to change simultaneously, leading to incorrect readings.

However, by using Gray code, the risk of these transition errors is minimized.

B Comparison of Gray code to standard binary for the numbers 0-7

Numbers Standard binary Gray code

0 000 000

1 001 001

2 010 on

3 on 010

4 100 110

5 101 m

6 110 101

7 m 100

Excess-N (biased representation)

Excess-N is a system where a fixed bias (N) is added to the actual value to form an encoded

value, and you subtract this bias to decode it. This is used to make all signed integers appear as

non-negative binary numbers to allow for easier comparisons and arithmetic operations.

For example, with Excess-3:

The decimal number 2 would be encoded as:

2+3=5

0101

The decimal number —2 would be encoded as:

-2+3=1

0001

In an 8-bit system, Excess-127 is often used, which adds 127 to encode an 8-bit number and

subtracts 127 to decode it. If you consider trying to order a set of signed binary numbers, this

can be difficult as the negative numbers are larger binary numbers than the positive.

Tor example, take 127 and —127 (using sign-magnitude):

Pre-encoded numbers:

01111111 =127

10000001 =127

When we encode these numbers with Excess-127, the positive numbers now appear larger than

the negative numbers, making them easier to put in order:

Encoded numbers (Excess-127):

127 + 127 = 254

11111110

—127 + 127 =0

00000000

A1.2 Data representation and computer logic

After this process has been completed, we decode the numbers again to return them to their

original form:

Decoded numbers (Excess-127):

254 -127 =127

11111110

0-127 =-127

00000000

Fixed-point representation

Fixed-point representation is a method used to store real numbers (numbers with fractional

parts) in binary by fixing the position of the binary point. In a fixed-point system, the binary

point is placed at a predetermined position, either between certain bits or at a specific location

in the binary sequence. This allows for a straightforward representation of fractional numbers,

though with some trade-offs in terms of precision and range.

For example, if we want to represent 5.25 in an 8-bit system where four bits represent the

integer and four bits represent the fractional part:

Integer part (four bits): 0101 = 5

Fractional part (four bits): 0100 = 0.25

Combined: 0101.0100

Note: Binary fractions are used for the fractional part, where the first bit to the right represents

! the second bit represents ! the third } and the fourth &. So, in the example above, we have 04

,14,03and 04

The number of bits assigned in this system limits the range and precision. In this example,

with a 4-bit signed integer, we only have the range of -8 to 7.9375, with the smallest

representable value being 0.0625 (35). This means this system is unable o handle very large

or very small numbers effectively. However, it is a simpler and faster system compared to

floating-point arithmetic (see below), and does not require any complex operations to adjust

the position of the binary point.

Floating-point representation

Floating-point representation is a method used to represent real numbers that can have a

very large range or fractional parts. It does this by storing numbers in a format that includes a

sign, an exponent and a mantissa (or significand). This formar allows computers to efficiently

handle very large numbers, very small numbers and numbers with fractional parts, all with a

reasonable degree of precision.

Using the IEEE 754 standard for single-precision floating-point numbers (which uses 32 bits):

1 Sign bit (one bit):

The sign bit determines whether the number is positive or negative.

2 Exponent (eight bits):

This is used to scale the number by a power of two and is stored using the Excess-127

system in its “biased” form; in other words, 127 is added to the actual exponent value.

3 Mantissa (23 bits):

This represents the significant digits of the number. The mantissa does not store leading

ones (in normalized form).

A1 Computer fundamentals

For example, this is how we could represent the decimal number -5.75:

Convert the number to binary:

101.11

Normalize this number to the form of Lxxxxx x 2™

1.0111 x 22

Determine the components:

Sign bit: 1 (as it is a negative number)

Exponent: 2 + 127 (Excess-127) = 129 = 10000001

Mantissa: 01110000000000000000000 (ignoring the leading 1)

So, the IEEE 754 single-precision binary representation of —3.75 is:

1 (sign) 10000001 (exponent) 01110000000000000000000 (mantissa)

This system allows for the representation of both very large and very small numbers, which is

essential in scientific computing, engineering and graphics, and is more precise than fixed-

point representation.

However, it is still not precise enough to represent all decimal numbers, and this can lead

to rounding errors. The complexity of the system also makes it slower than others, often

requiring special handling in hardware.

A1.2.3 Purpose and
use of logic gates

M The history of logic gates
In the mid-19th century, a British mathemarician named

George Boole developed an algebraic system known

as “Boolean algebra”. This provided a mathemarical

framework for representing logical statements and

operations that laid the foundations for modern

digital logic.

In the early 20th century, an American mathematician

and electrical engineer named Claude Shannon was the

first person to recognize the potential of Boolean algebra

for electrical circuit design. He demonstrated how the

design of electrical relay circuits could be optimized

using Boolean algebra, and then the development of

semiconductor technology further propelled the evolution

of logic gates.

The transistor was then invented in 1947 at Bell Labs,

which made it possible to build compact and efficient

logic gates. By the 1960s to 1970s, integrated circuits were

incorporating multiple transistors on a single chip, which

led to the development of microprocessors. Logic gates are
M George Boole, the British mathematician who developed

Boolean algebra, laying the groundwork for digital logic and

modern computer science basic calculator to advanced supercomputers.

the building blocks of modern digital systems, from the

A1.2 Data representation and computer logic

H Basic gates
Logic gates are fundamental components in digital electronics, crucial for building various

types of circuits within computers and other digital devices. The basic types of logic gates

include AND, OR and NOT gates, each performing a specific logical function. These gates take

one or more binary inputs and produce a binary output based on the logical operation they

perform. To understand and verify the behaviour of these gates, we use truth tables, which

systematically list all possible input combinations and their corresponding outputs, providing

a clear representation of the gate’s function. Additionally, each gate has a corresponding

Boolean algebra representation that simplifies complex logical expressions.

Logic gates are made up of transistors, which act as electronic switches, allowing or blocking

the flow of electrical current. In a transistor, the control wire (or “gate”) regulates the current

between the two electrodes, known as the “source” and the “drain”. When voltage is applied

to the gate, it allows current to flow from the source to the drain, enabling the transistor to

switch states and perform logical operations.

Transistor

Electrode Electrode
source

T Electrode T Electrode

Control wire / drain Control wire

M A Buffer gate that shows the inner workings of the gate - B When electricity flows down the control wire, the transistor

when the control wire is off, no electricity can flow between allows for the flow of electricity between electrodes

the electrodes

Above is a simple Buffer gate, where we can consider the control wire as the input and the

electrode drain as the ourput. If the input is on, the output is on; and if the input is off, the

output is off. We can show this using a truth table:

Buffer gate truth table

Input A Output X

1 1

0 0

@ A1 Computer fundamentals

- -. / =, Va Output

N N/

Input Input

Current - Qutput

Transistor A Transistor B

Current > Output

Transistor A Transistor B

M Transistor-level schematic of an AND gate

Current Output

Transistor A © Transistor B

—_— [On |
Current @ s Output

T

Transistor A | Transistor B

El Off |
M Transistor-level schematic of an OR gate

A1.2 Data representation and computer logic

AND gate

The diagram on the left shows an AND gate implemented

using transistors. The gate has two inputs and one output.

If only one of the inputs is on, one of the transistors

without an input would stop the current passing through.

It is only when both inputs are high (1) that the transistors

allow current to pass through, resulting in a high output (1).

A —

X
B—

W AND gate

M Input and output rules: The AND gate outputs 1 only if both

inputs are 1

AND gate truth table

Input A Input B Output X

0 0 0

0 1 0

1 0 0

1 1 1

Boolean algebra: X=A - B

OR gate

The diagram on the left shows an OR gate implemented

using transistors. The gate has two inputs — A and B —

and one output. When either input A or B is high (1), the

corresponding transistor turns on, allowing current to

flow through the circuit and resulting in a high ourpur (1).

When both inputs are low (0), neither transistor conducts

and the ourput remains low (0).

B OR gate

M Input and output rules: The OR gate outputs 1 if at least one

input is 1

OR gate truth table

Input A Input B Output X

0 0 0

0 1 1

1 0 1

1 1 1

Boolean algebra: X=A + B

NOT gate

The diagram below illustrates a NOT gate (inverter) using a

transistor. In this configuration, the input line is connected

to the gate of the transistor, the output line is connected to

Current the source and the drain is connected to ground.

T Ground
Input A X

B NOT gate

When the input is high (1), the transistor turns on, allowing

— current to flow from the source to the drain, effectively

Outout grounding the output and resulting in a low voltage at the
utpu
* output (0). When the input is low (0), the transistor turns

off, preventing current from flowing to the ground. In this

state, the output then outputs a high voltage (1).

¥ Current M Input and output rules: The NOT gate outputs the opposite

value of the input

Inlut 4~ Ground NOT gate truth table

Input A Output X

0 1

1 0

B Transistor-level schematic of a NOT gate Boolean algebra: X = A

H Derived (complex) gates
The following gates — NAND, NOR, XOR and XNOR — are examples of derived gates. Derived

gates are combinations of the basic gates and provide more complex logic functions. To

show these, we will move up a level of abstraction and, rather than examine the transistor

schematic, we will look at how the basic gates are combined to create them.

NAND gate (NOT AND)

A NAND gate is constructed with an AND gate followed by a NOT gate. Due to this, it gives

the opposite output to an AND gate. If both inputs are high (1), the output is low (0). In all

other cases, the output is high (1).

1 > "
B How a NAND gate is constructed: an AND gate followed by a NOT gate B NAND gate

M Input and output rules: The NAND gate outputs 1 unless both inputs are 1

NAND gate truth table

Input A Input B Output X

0 0 1

0 1 1

1 0 1

1 1 0

Boolean algebra: X=A- B

A1 Computer fundamentals

NOR gate (NOT OR)

An NOR gate gives the opposite output to an OR gate as it is constructed using an OR gate

followed by a NOT gate. This means that it is only when both inputs are low (0) that the output

is high (1). In all other cases, the output is low (0).

. A
X

— B

M How a NOR gate is constructed: an OR gate followed by a NOT gate B A NOR gate

M Input and output rules: The NOR gate outputs 1 only if both inputs are 0

NOR gate truth table

Input A Input B OQutput X

0 0 1

0 1

1 0

o

o

o

1 1

Boolean algebra: X=A+ B

XOR gate (exclusive OR)

The XOR (exclusive OR) gate differs from the OR gate in one key way: its output is true only

when the inputs are different. This means the XOR gate outputs true when exactly one of the

inputs is true, but false when both inputs are the same. For example, if both inputs are high

(1), the XOR gate’s output is low (0). This is unlike the OR gate, which would output high (1) in

this case.

31—
By

.)
M How an XOR gate is constructed M An XOR gate

M Input and output rules: The XOR gate outputs 1 if the inputs are different

XOR gate truth table

Input A Input B Output X

0 0 0

0 1 1

1] 1

1 1 0

Boolean algebra: X=A @ B

XNOR gate (exclusive NOT OR)

The XNOR gate is constructed using an XOR gate followed by a NOT gate. This means the

output is the opposite to an XOR gate, only outputting high (1) when both inputs are the same

(either high or low).

A1.2 Data representation and computer logic

A
X

B

M How an XNOR gate is constructed: an XOR gate followed by a NOT gate M An XNOR gate

M Input and output rules: The XNOR gate outputs 1 if the inputs are the same

XMNOR gate truth table

Input A Input B Output X

0 0 1

0 1 0

1 0 0

1 1 1

Boolean algebra: X=A D B

A1.2.4 Constructing and analysing truth tables

B Truth tables to predict the output of simple logic circuits
The following diagram shows a logic circuit, where a number of logic gates are connected

together. In this scenario, you need to be able to handle circuits with up to three inputs.

I I
A I I

= 1 i B L e
14 I |

I I
| I

I
I — I

TN I

I R} I
I L S I
|

1 | ’ X
| I
I [
| I
| I

N | I
| I

f\Q) I I
= I [

e 1 i
I I
| I

1 i
T L

part 1 part 2 part 3

When creating a truth table, first enter the three inputs and their possible input states; in this

case, A, Band C. As there are three inputs, you can calculate the number of rows you will need

by 2", where n represents the number of inputs. In this example:

2°=8

Populate the furthest right column, alternating between 0 and 1.

Populate the middle column by alternating, every two rows, between 0 and 1.

Populate the left-hand column by alternating, every four rows, berween 0 and 1.

A1 Computer fundamentals

Following this pattern will give you every possible input state.

A B C

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

Once this is complete, we then add the intermediate values to make it easier to remember the

state at each stage of the circuit. In this example, we have three intermediate values: P, Q and

R. Finally, we add the output column, X.

A B C P Q R

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

Now, starting with the intermediate values, work through the logic circuit.

A B [« P Q R X

(AANDB) (BNORC) | (PORQ) | (CXORR)

0 0 0 0 1 1 1

0 0 1 0 0 0 1

0 1 0 0 0 0 0

0 1 1 0 0 0 1

1 0 0 0 1 1 1

1 0 1 0 0 0 1

1 1 0 1 0 1 1

1 1 1 1 0 1 0

A1.2 Data representation and computer logic

Produce the truth tables for the following logic circuits.

=

—

{>c X

A1 Computer fundamentals

———

B Truth tables to determine outputs from inputs for a

problem description
Problem description: A baby alarm that goes off when the alarm is switched on and the baby is

crying or the room is too cold.

With a problem description, we first need to identify the inputs. Here we have three: alarm

switch, baby crying and room temperature, which we can represent as A, B and C and set up

our truth table.

We know the alarm goes off if the device is switched on AND the baby is crying OR the room

is too cold. From here, we can identity the logic gates in the description. We can determine

from this that the device must be switched on before the alarm can go off, so if the switch is

off, all outputs would be 0. If the device is switched on, at least one of the other two inputs

must be on for the alarm to trigger. We have one intermediate value (baby crying OR room is

cold), represented with P.

A B C P X

(switch) (crying) (cold) (BorQ) (A and P)

0 0 0 0 0

[¢] 0 1 1 0

0 1 4] 1 0

] 1 1 1 0

1 0 0 0 0

1 0 1 1 1

1 1 4] 1 1

1 1 1 1 1

A1.2 Data representation and computer logic

Complete the truth tables for the following problem descriptions:

1 A traffic light control system that changes to green only if the pedestrian button is not

pressed and the road sensor detects no cars waiting on the side road.

2 A water irrigation system that activates if the soil is dry or the temperature is high,

provided the system is manually enabled.

3 A nuclear missile launcher: the missile should only launch if the president and two of his

three cabinet ministers flip the switch.

B Logical expressions
We can represent logic circuits using Boolean algebra. If we use the baby alarm scenario again,

we can represent this as:

X=A-(B+(C)

In Boolean algebra, parentheses are often used to indicate which operations should be

performed first. However, there is a standard order of operations, similar to PEMDAS

(or BODMAS) in mathematics. If no parentheses are present, follow this sequence:

m NOT

B AND (including NAND)

B OR (including NOR and XOR)

This ensures that operations are executed in the correct order for accurate results.

Using the Boolean algebra from the gates in Section A1.2.3, write the Boolean algebra for the

three logic circuits created in the previous problem descriptions:

1 Traffic light control system

2 Water irrigation system

3 Nuclear missile launcher

B Karnaugh maps and algebraic simplification
Karnaugh maps (K-maps) are a tool that helps simplify Boolean expressions, making it easier

to create simpler and more efficient digital circuits. Instead of using complicated algebraic

methods, K-maps allow you to visually group terms from a truth table, which makes it faster to

find a simplified expression. This process is useful because it reduces the number of logic gates

needed in a circuit, saving time, space, cost and power consumption.

Two inputs

This two-input K-map is used for expressions with two variables. In this map, variable A is

placed along the side and variable B across the top. llowever, the order of the variables doesn’t

matter — B could be along the side and A across the top. Both possible states (0 and 1) for each

variable are shown in the map, representing all combinations of their values.

A1 Computer fundamentals

Expression: A + B

ANB

[

-

|
Q
o

o

K

—

‘We split the expression at the OR operator and focus first on the term involving A. We

populate the K-map where A is 1, which, in this case, corresponds to the entire bottom row. At

this stage, we ignore B and only fill in the cells where A is 1.

This completed K-map now shows the expression A + B.

This is another example of a completed map for the expression A + B:

B

r

-

L

=

=
|
l

=

Expression: A-B+A - B

This is a more complicated expression, but still has only two inputs. Using this expression, the

circuit would look like this:

T

A1.2 Data representation and computer logic

The table map structure is still the same:

R B

A\B
o] 1

We again split the expression at the OR symbol, focusing initially on A - B. In this case, we

insert a 1 into only one cell, where both A and B are 1.

A\B
0 1

Next, we focus on the second part of the expression, A - B. In this case, we insert a 1 into the

cell where Ais 1 and Bis 0.

ANB

The K-map is now complete and shows that the value of B has no impact on the outcome,

allowing us to simplify the expression to just A. If we create the circuit using this simplified

expression, we can see that the circuit is significantly more efficient, while still performing the

same function.

A - -

Three inputs

Expression: A-B-C+A-B-C+A-B.C

With three inputs, we use a similar K-map but, this time, we place two of the inputs across the

top. The digits across the top may seem out of order compared to standard binary counting

(00, 01, 10, 11). Instead, they follow the Gray code convention (see Section A1.2.2 for more

information), where only one digit changes at a time. It is important to set the map up this way

to ensure correct grouping and simplification.

AB

00 o n 10
C\AB

We now follow similar steps as with the two-input K-map. We separate the expression by

the OR operator and focus on the first term: A - B - C. In this step, we populate the K-map by

inserting a 1 into the cells where Ais 0,Bis 1 and Cis 1.

A1 Computer fundamentals

AB AB AB AB
C\AB

00 01 1" 10

0

1 1

Followed by: A-B - C

AB AB AB AB
C\AB

00 01 n 10

0

1 1 1

And finally: A-B- C

AB AB AB AB
C\AB

00 01 1 10

0

! L1 L] jnedl)

Grouping the 1s and simplifying the expression

Although it wasn't explicitly stated before, you may have noticed the boxes drawn around

groups of 1s in the K-maps. These boxes help simplify the Boolean expression, but there are

some important rules that must be followed when grouping 1s:

B Groups must contain powers of 2: One, two, four, eight or sixteen 1s can be

grouped together.

B Groups must be rectangular or square: Each group should form a rectangle or

square shape.

B Groups cannot be diagonal: Adjacent 1s can only be grouped horizontally or vertically,

not diagonally.

B Groups must be as large as possible: Always aim to make the largest groups to simplify the

expression further.

B Groups can overlap: Some 1s may be included in more than one group if it helps form

larger groups.

B Minimize the total number of groups: The goal is to use the smallest number of groups to

cover all the 1s.

To determine the expression from the groups, we look at each group of cells and refer to the

variables. If a variable’s value stays the same across all the cells in the group, we keep that

variable in the simplified expression. Iowever, if the variable’s value changes across the group,

we discard it from the expression.

C\AB
00 01 1 10

A1.2 Data representation and computer logic

The first group is entirely along the bottom row, meaning C stays the same (C = 1), so we keep

it in the expression. A changes from 0 to 1 between the cells in the group, so we discard A. B

remains 1 in both cells, so we keep B. Therefore, the first part of our final expression is:

B-C

AB AB AB AB
C\AB

00 01 n 10

The second group, like the first, is located along the bottom row, meaning that C stays as 1

because it does not change across the group. In this case, A remains 1 in both cells, while

B changes from 0 to 1. Since B changes, we discard B from this part of the expression. As a

result, we keep A and C, giving us the second part of our expression:

A-C

We then combine these expressions with an OR operator, giving us the final expression:

B-C+A-C

(.-Common mistake

When setting up your K-map for three inputs, make sure to use Gray code for the headings, not

standard binary. Gray code ensures that only one bit changes between adjacent cells, which helps

when grouping 1s and simplifies the expression more effectively.

Wrapping around edges in K-maps

Here is the K-map for the expression:

B+A-B-C

AB AB AB AB
C\AB

To group these 1s, you may assume this is the answer:

AB AB AB AB
C\AB

00 01 1 10

1 1] 1 1

However, K-maps are considered three-dimensional, and groups can be formed from left

to right and top to bottom (although only left to right is possible with three inputs). In this

example, it is possible to build a larger group by combining the two groups on the edges,

forming a square group of four 1s.

AB AB AB AB
C\AB

00 01 1 10

k

1 1 1

A1 Computer fundamentals

Using these groups, we can form the simplified expression:

A-C+B

B+A-B

Draw the truth table for the above expression.

N
S

I

Draw the Karnaugh map for the expression and

write the simplified expression.

‘B-C+A-B-C+A-B-C

Draw the truth table for the above expression.

&

w

Draw the Karnaugh map for the expression and

write the simplified expression.

‘B-C+A-B-C+A-B-C

Draw the truth table for the above expression.

U

I

Draw the Karnaugh map for the expression and

write the simplified expression.

M K-map drawn on a torus and in a plane - the dot-marked cells
are adjacent

A1.2.5 Constructing logic diagrams

B Designing digital circuits from Boolean algebra expressions
By understanding the principles of Boolean algebra, we can simplify complex logic expressions

and translate them into circuit diagrams. This journey from abstract mathematical notation

to circuit design is essential for creating efficient and reliable digital systems. We will start by

creating the digital circuit from the expression below:

Y=(A-B)+(A-B)

1 Start with two inputs: A and B.

2 Work on the first parenthesis by introducing an AND gate and joining both A and B to it.

: —— .

A1.2 Data representation and computer logic

3 Work on the second parenthesis, connecting A to a NOT gate and B to a NOT gate.

A

Connect both the outputs to an AND gate.

— V
Y
T

Y
Y
T

Now work outside the parentheses and introduce the OR gate to link them together.

>

Create the digital circuits from the following Boolean expressions.

1 Y=(A.B@DA

Y=(A+B)-A.B

Y=4A.TB+0

Y=(A®B) - B®CO

Y=(A.B).C+{A+B) i

B

w
N

A1 Computer fundamentals

Operating systems

and control systems

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A1.3.1 Describe the role of operating systems

» A1.3.2 Describe the functions of an operating system

P A1.3.3 Compare different approaches for scheduling

» A1.3.4 Evaluate the use of interrupt handling and polling

» A1.3.5 Explain the role of the operating system in managing multitasking and resource

allocation (HL)

P A1.3.6 Describe the use of the control system components (HL)

» A1.3.7 Explain the use of control systems in a range of real-world applications (HL)

A1.3.1 The role of operating systems
An operating system (OS) is the fundamental software that manages computer hardware

and software resources and provides common services for computer programs. It acts as an

intermediary between the user and the computer hardware, ensuring efficient and secure

operation of the system.

Operating systems simplify user interactions with computer hardware by abstracting the

underlying complexities. This means users and applications do not need to understand the

detailed workings of hardware components such as CPUs, memory and input / output devices.

Instead, the OS provides a set of high-level services and interfaces that hide these complexities,

making the system easier to use and program.

The primary role of an operating system is to manage the computer’s resources effectively.

This includes:

B CPU management: allocating CPU time to various processes and ensuring

efficient execurion

B memory management: handling the allocation and de-allocation of memory to

applications, and managing virtual memory to extend physical memory capacity

®m storage management: organizing and managing data on storage devices, ensuring reliable

data storage and retrieval

B device management: controlling and co-ordinating hardware devices, providing drivers

and interfaces for seamless operation.

Some of the most famous modern operating systems are Microsoft Windows, Apple macOS

and Linux on larger computers and laptops, with Android and iOS being more popular for

smaller portable devices such as smartphones.

A1.3 Operating systems and control systems

4 Virtual memory: a

memory-management

technique that allows

a computer to use

more memory than is

physically available by

temporarily transferring

data from RAM to

disk storage, enabling

the execution of

larger programs and

multitasking.

Virtual memory

(per process)

A1.3.2 Functions of an operating system
Operating system functions are multifaceted, ensuring thar the system runs smoothly,

efficiently and securely. Here, we will delve into the various critical functions of an operating

system, illustrating how it maintains system integrity while running background operations

and managing resources.

[] Memory management

Memory management is a fundamental function of an operating system (OS), involving the

control and co-ordination of a computer’s primary memory (RAM). The OS ensures that

memory is allocated efficiently to processes and applications, maintains system stability and

protects memory areas from unauthorized access.

When you open / run an application, the OS will load it into RAM. First, it will locarte the

application on the storage device (likely a hard disk drive or solid state drive) and read the

executable file (.exe on Windows or .app on Mac). This file contains all the application’s code

and initial data.

The OS then allocates the necessary memory space for the application. This includes space

for the code, data and any other required resources. The OS ensures that the application has

enough space to execute without interfering with other processes.

Physical memory Once the application is loaded into RAM, the OS

continuously manages memory to ensure efficient operation

and system stability. While the application is running,

the OS can dynamically allocate and de-allocate memory

as needed by the application. The OS also ensures that

each process operates within its own memory space. This

prevents processes from interfering with each other, which

enhances the security and stability of the system.

Another process’s

memory,
If the applications require more memory than is available

in the RAM, the OS can use virtual memory to keep the

system running smoothly. Virtual memory is when the

OS allocates some space on the hard disk drive (HDD) or

solid state drive (SSD) to use as RAM. This is not an ideal

situation, as reading from a storage device is much slower

than accessing RAM but, by switching processes with a

higher priority into RAM, and those with lower priority

into virtual memory, the OS is able to continue to run the

system at an optimal level.

(;Top tip!

Think of memory management as organizing books on

a bookshelf. The operating system allocates each book

(process) its own space on the shelf (memory). Just as you

wouldn't let books overlap or mix up, the OS ensures that

each process has its own protected area in memory.

Disk

W Relationship between virtual memory and physical memory

A1 Computer fundamentals

H File management
File management is a crucial function of an OS, involving the storage,

retrieval, organization and manipulation of data on storage devices. The OS

provides a structured way to manage files and directories, ensuring system

stability and security.

The OS employs a hierarchical file system to organize files in a logical and

structured manner. Files are organized into directories (or folders), which can

contain further directories, creating a tree-like structure. This organization

makes it easier for users and applications to locate and manage data.

The OS allows a number of set file operations that users and applications

can perform on the files and directories, including creating new files and

directories; reading and writing data to files; deleting files; renaming files;

and moving or copying files and directories to different locations.

To ensure consistency and avoid conflicts, the OS enforces rules for naming

files, ensuring no two files in the same directory have the same name.

Files often have extensions, like .jpg or .exe, to indicate the file type and

B Windows File Explorer view displaying a associated application although, depending on the OS settings, these may be

hierarchical directory structure hidden from the user.

AN AN AN AN AN

N TN D [N [N
= ek v

- 4 e e

= Ly

- = Lo

B MacOS finder view displaying a hierarchical directory structure M Some of the most commonly used file extensions

¢ File extension: 3 When managing the storage of files, the OS uses various methods to improve performance;

suffix at the end of a this includes how it allocates files on the physical storage medium, manages free space

filename that indicates and performs maintenance on the saved data. One important maintenance task is

the file type and the defragmentation, which reorganizes fragmented data on a hard disk drive (I11DD).
program associated with

opening or processing

that file (e.g. .docx for]) . . . [

Word documents, .jpg ragments into contiguous sequences, so improving system performance.

Fragmentation occurs over time as files are created, modified and deleted, causing them to

be scattered across different sectors of the disk. Defragmentation aims to rearrange these file

for images).

Defragmentation:

the process of

reorganizing the data on

a hard drive so that files

are stored in contiguous

blocks, reducing

fragmentation and

impraving access speed

and overall system

performance.

A1.3 Operating systems and control systems

Device drivers:

specialized software

programs that allow

the operating system

to communicate with

and control hardware

devices, e.g. printers,

graphics cards or network

adapters, by providing

the necessary instructions

and protocols.

Buffering: the

process of temporarily

storing data in a memory

area (buffer) while it

is being transferred

between two devices

or processes, helping

to manage differences

in data-flow rates

and ensuring smooth,

uninterrupted operation.

Caching: the process

of temporarily storing

frequently accessed data

in a high-speed storage

area (cache) to reduce

access time and improve

system performance

by enabling quicker

retrieval of the data.

4 Spooling: the process

of gqueuing data or tasks

in a buffer, typically for

input / output devices

such as printers, so that

they can be processed

sequentially and at their

own pace, allowing

the system to continue

working on other tasks

in the meantime.

Plug and Play (PnP):

a technology that allows

the operating system

to detect, configure

and install drivers

automatically for new

hardware devices when

they are connected to

the computer, enabling

them to work without

requiring manual set-up

by the user.

l Device management
Operating system device management ensures that hardware devices operate etficiently

and interact seamlessly with software applications. The OS controls and co-ordinates the

use of hardware components such as printers, disk drives, display screens, keyboards and

network interfaces through specialized software called device drivers. Device drivers are

essential programs that enable the OS to communicate with connected hardware. Each piece

of hardware requires a specific driver to function correctly and efficiently. The OS uses these

drivers to provide a uniform interface, allowing applications to interact with the hardware

without needing to understand the hardware’s specifics.

The OS also handles input/output (I/0) management to co-ordinate data transfer between

the computer and peripheral devices. It employs techniques such as buffering, caching and

spooling to optimize performance and reliability. Buffering involves using temporary storage

areas to hold data while it is being transferred between devices, accommodating speed

differences between the CPU and peripheral devices. Caching stores frequently accessed data

to reduce access times, improving overall system efficiency. Spooling queues data and sends it

in a manageable order to devices such as printers that cannot handle interleaved data streams.

Modern operating systems have introduced user-friendly ways of connecting devices, such

as Plug and Play (PnP) technology. With PnP, the OS can automatically identify a device that

has been attached and install the necessary drivers and configure settings without the need

for user interaction. The OS is also capable of detecting errors and taking action to recover

from them, by resetting the device, reinitializing drivers or notifying the user of the issue.

Additionally, the OS provides security and access control to ensure that only authorized users

and processes can access certain devices, maintaining system integrity and security.

y

L]
Operating system

Device driver

W Device drivers act as intermediaries between the operating system and hardware devices, enabling

software to communicate effectively with hardware components

H Scheduling
The OS schedules the process of managing the execution of multiple processes by determining

User

Application

Software —

-

=

=

Hardware in __|
Device

most cases

which process runs at any given time. The scheduler is responsible for allocating CPU time

to processes, ensuring efficient and fair use of system resources. This function is crucial

for mulritasking environments, where multiple applications and background processes run

concurrently. By implementing various scheduling algorithms, the OS aims to optimize

performance, reduce wait times and maintain system stabiliry.

A1 Computer fundamentals

Security tokens:

physical or digital

devices that generate

or store authentication

credentials, such as

one-time passwords or

cryptographic keys, used

to verify a user’s identity

and secure access to

systems, networks or

online services.

A1.3 Operating systems and control systems

In Section A1.3.3, we will delve deeper into specific scheduling approaches, including first

come first served, round robin, multilevel queue scheduling and priority scheduling. Each

method has its own advantages and trade-offs, and its suitability depends on the specitic

requirements and goals of the system.

B Security
The OS security is designed to protect the integrity, confidentiality and availability of information

and resources within the computer system. It has mechanisms to safegnard against threats,

prevent unauthorized access and ensure that users and applications can operate securely.

User authentication
User authentication can be used in multiple ways. Initially, the OS may require the user to

authenticate themselves to log in to the system. It would require the user to provide credentials

such as a username and password, biometric data or security tokens. Once logged on, based

on the user settings, the OS can then grant or prevent access to certain files, folders or

applications on the system. This allows systems to have multiple users with ditferent access

credentials, such as an administrator and a standard user.

Encryption

The OS can provide tools and frameworks for encrypting files, communication channels

and devices. The encryption ensures that the data, even if it is intercepted or accessed by

unauthorized individuals, cannot be read without the decryption key.

Auditing and monitoring

All system activities, such as users logging in, file access, system errors and administrator

actions, are tracked by the OS in a log. These logs are used for auditing and monitoring

purposes and can help administrators detect suspicious activities and potential security

breaches. They can also be used to help identify issues and areas for improving the

system performance.

[*]
Fls Adbon Ve Help

e sE AT
& Cremt Voo fLosall
5 Cusstem Vs

Dot

- e Wt Lage
5 T & Open Swetdl
B fonmtr .
|| st oot St

['] Femmared Evanen Clemag
7 hpphostons sad Serecus Lo | (1 Y e Conn

b Subporghiang 0 [-

o e

el S o
: AmnenaTee

L bu- Wt "

i Rebesh
e pocesn Pesmaey o o T ey Rty s oeta .o i 'Mmm«“qcmm\wnmmlw-umn 0 ey .

2] Eeara Pt

B actucn e
Leg hame Sywam oy J
Sowsw e St [S IR Ll St tuincta
forw 2 * N
Lo e [Ru— =
Uer SraTEM Compumer 1000 0 e .
oo L

Wy imlgrmate: (e L Omine e

B Windows Event Viewer

Malware: a general

term for any software

designed with malicious

intent, e.g. viruses,

worms, trojans, spyware

and ransomware, which

can damage systems,

steal data or disrupt

operations.

Viruses: malicious

software programs

that attach themselves

to legitimate files or

programs and spread to

other files or systems,

often causing damage

or disruption.

4 Worms: self-

replicating malware that

spreads across networks

without needing

to attach to other

programs, exploiting

vulnerahilities to infect

multiple systems.

Trojans: deceptive

programs that appear

legitimate but carry

hidden malicious code,

which can create

backdoors, steal data

or cause harm once

executed by the user.

Malware protection

The OS includes mechanisms to detect and prevent malware infections and intruders. These

include antivirus software, firewalls and intrusion detection systems (IDS). These tools scan

for malicious software, monitor network traffic and block unauthorized access attempts,

protecting the system from viruses, worms, trojans and other malicious threats.

Bl Accounting
Operating system accounting functions are essential for monitoring and managing the usage

of system resources. These functions track resource consumption by users and processes,

providing valuable data for system administrators to analyse performance, allocate costs and

optimize resource utilization. The key aspects of OS accounting functions include:

Resource usage tracking

The OS continuously monitors the consumption of various resources by users and

processes; this includes tracking:

00 CPU usage: the amount of CPU time consumed by each process or user

00 memory usage: the amount of RAM allocated and used by each process

O disk usage: the amount of storage space occupied by files and directories owned by

each user

O nerwork usage: the volume of data sent and received over the network by each process

Or user.

Process accounting

Process accounting involves maintaining detailed records of each process that runs on the

system,; this includes information such as:

[process ID: a unique identifier for each process

user ID: the identifier of the user who initiated the process

execution time: the total CPU time used by the process

start and end times: the timestamps indicating when the process started and finished

O
o
o
o
a
o

resource consumption: details on the amount of memory, disk I/O and other resources

used by the process.

User accounting

User accounting tracks the resource usage by individual users or user groups; this

information is crucial for:

O cost allocation: in mulri-user environments, such as universities or enterprises,

resource usage data can be used to allocate costs to different departments or projects

based on their consumption

0 quota management: enforcing resource usage limits for users to prevent any single user

from monopolizing system resources; this can include disk quotas, limiting the amount

of storage a user can use and memory Cll.lDlEl’S.

Performance monitoring

The OS accounting functions are integral to performance monitoring; by analysing

resource usage data, system administrators can identify:

0 bottlenecks: areas where resources are being overutilized, causing performance

degradation

O underutilization: resources that are underused, indicating potential areas for

optimization

[trends: patterns in resource usage over time, which can inform capacity planning and

system upgrades.

A1 Computer fundamentals

B Auditing and reporting

The OS generates detailed reports based on the collected accounting data; these reports can

be used for:

O auditing: ensuring compliance with organizational policies and regulatory requirements

by reviewing resource usage and access patterns

[security analysis: detecting unusual or suspicious activity by analysing resource

usage anomalies

[0 resource management: making informed decisions about resource allocation, system

configuration and future investments.

B Billing and chargeback

In environments where resource usage needs to be billed to individual users or

departments, such as cloud-computing services or academic institutions, OS accounting

functions enable:

[0 usage-based billing: charging users based on their actual resource consumption, such

as CPU hours, memory usage and network bandwidth

00 chargeback: allocating costs to different departments or projects based on their

resource usage, promoting accountability and efficient resource use.

Bl Graphical user interface
By offering visual elements such as windows, icons, menus and pointers, the OS provides a

user-friendly environment for interacting with the computer and allows the user to execure

commands, manage files and run applications.

M The Ubuntu GUI

User interface elements
The user interface elements provided by the OS allow the user to interact with the system

intuitively. These elements include windows, which display the contents of applications,

documents or system information. Icons give graphical representation to applications, files

and system functions, providing quick access to frequently used items. Menus offer lists

of commands or options to access various functions, making navigation and operation

straightforward. Pointers, usually represented by an arrow or cursor, can be controlled

with an input device like a mouse, enabling users to select, drag and interact with GUI

elements seamlessly.

A1.3 Operating systems and control systems -

Application management

The GUIT facilitates the management of and interaction with multiple applications, enhancing

user productivity and experience. Task switching allows users to move quickly between

open applications, with features like the taskbar or application switcher (Alt + tab) enabling

efficient navigation. Window management helps users organize their workspace by arranging,

overlapping and tiling windows. Features such as snapping windows to edges or corners

create a split-screen effect for multitasking. The desktop environment, where users can place

icons, shortcuts and widgets, allows for a personalized and organized workspace, catering to

individual preferences.

File and system management

The GUIT simplifies file and system management tasks through visual tools and interfaces. A

GUI-based file management tool, like the File Explorer, allows users to navigate directories,

view file properties and perform operations such as copying, moving, deleting and renaming

files and folders. This tool often includes features such as search, sort and filter to facilitate file

management. The GUI also provides access to system settings and control panels, enabling

users to configure hardware, software and system preferences through intuitive graphical

interfaces. Drag-and-drop functionality offers a user-friendly method for transferring files and

data between applications and directories.

Accessibility

The GUT includes features that enhance accessibility for users with disabilities, ensuring that

the system is usable by everyone. Screen readers convert text and GUI elements into speech

or Braille, helping visually impaired users to navigate the system. High-contrast themes and

screen magnifiers improve readability for users with low vision. Keyboard shortcuts allow

users to perform actions quickly without relying on a mouse or touchpad, benefiting users

with limited mobility.

‘e ¢ s Security & Privacy Q

} General FileVault Firewall

Allow the apps below to control your computer.

Input Monitoring

- Full Disk Access

. Fies and Folders

[screen Recording

. Click the lock to make changes

W MacOS accessibility features

A1 Computer fundamentals

Hypervisor:

software that creates

and manages virtual

machines by allowing

multiple operating

systems to run

simultaneously on a

single physical machine,

sharing the underlying

hardware resources.

Load balancing: the

process of distributing

netwaork or application

traffic across multiple

Servers or resources

to ensure optimal

performance, reliability

and availability,

preventing any single

server from becoming

overwhelmed.

A1.3 Operating systems and control systems

Visual feedback
The GUI provides immediate visual feedback to user actions, enhancing the overall user

experience. Progress indicators, including progress bars and loading animations, inform

users about the status of ongoing operations such as file transfers or software installations.

Notifications, in the form of pop-up messages and alerts, keep users informed about important

events, updates or errors. Tooltips — small informative text boxes that appear when users hover

over icons or interface elements — provide additional information or guidance.

Customization and personalization

The GUI allows users to personalize their computing environment to suit their preferences,

making the system more enjoyable and efficient to use. Users can change the appearance of the

GUI by selecting different themes, wallpapers and window styles, creating a more customized

experience. Widgets and gadgets — small applications that provide quick access to information

and tools such as weather updates, calendars and system monitors — enhance the functionality

and aesthetics of the desktop. These customization options enable users to tailor their

workspace to their needs and preferences, improving overall satisfaction and productivity.

B Virtualization
Virtualization is a key feature of modern operating systems that allows multiple virtual

machines (VMs) to run on a single physical machine. Each VM operates independently, with

its own OS and applications. The operating system manages this through a hypervisor, which

allocates CPU time, memory and storage to each VM, ensuring efficient use of resources and

allowing each VM to function as if it were on a separate physical machine.

Virtualization enhances security and stability by isolating VMs from each other, preventing

issues in one VM from affecting others. It also allows for snapshots and backups, enabling

administrators to save the current state of a VM and revert to it if necessary. Live migrations,

which move VMs from one physical host to another without interrupting services, are another

crucial fearure, aiding in load balancing and hardware maintenance.

Additionally, virtualization supports disaster recovery and cloud services. By allowing

VMs to be easily backed up and restored, the OS ensures that critical applications and

data can be quickly recovered in case of failure. Virtualization also enables dynamic

scaling of IT infrastructure in cloud environments, allowing businesses to adapt quickly to

changing demands.

B Networking
Operating systems manage and facilitate network communication. One of the primary

functions of an OS in networking is to establish and maintain network connections. The

OS manages network interfaces and protocols, enabling devices to connect to local area

networks (LANs), wide area networks (WANs) and the internet. It configures network settings,

assigns IP addresses through DHCP (Dynamic Host Configuration Protocol) and handles

the underlying hardware, such as network interface cards (NICs), ensuring that devices can

communicate effectively.

The OS also provides essential services for data transmission and communication between

devices. It implements various networking protocols, such as TCP/IP (Transmission Control

Protocol/Internet Protocol), which govern how data is packetized, addressed, transmitted,

routed and received. The OS ensures data integrity and efficient transmission by handling

error checking, flow control and congestion avoidance. Additionally, the OS supports higher-

level protocols and services, such as HTTP for web browsing, FTP for file transfers and

SMTP for email communication, facilitating seamless interaction between applications and

network resources.

Security and access control are critical network functions managed by the OS. The OS employs

firewalls, encryption and authentication mechanisms to protect data as it travels across

networks. Firewalls monitor and control incoming and outgoing network traffic based on

predetermined security rules, helping to prevent unauthorized access and attacks. The OS also

supports virtual private networks (VPNs), which encrypt data and create secure connections

over public networks, ensuring privacy and security for remote users. These security features

safeguard nerwork communication and ensure that only authorized users and devices can

access network resources.

1 What is the primary role of an operating system in a computer?

2 How does the operating system abstract hardware complexities for users? Provide

an example.

3 Explain how the operating system manages multitasking and resource allocation. Why is

this important?

4 What are some of the key challenges the operating system faces in resource management?

5 What is memory management, and how does the operating system ensure efficient use

of memory?

Describe the role of device drivers in operating system device management.

How does the operating system manage files and directories? Give examples of file-

management operations.

8 What is the importance of process scheduling, and what are some common scheduling

algorithms used by operating systems?

9 Explain how the operating system handles security and access control. Why are these

functions critical?

Risk-taker: Research and information literacy

In this task, you will improve your research and information literacy skills by installing

Ubuntu, a popular Linux distribution, and comparing it with another operating system of

your choice.

1 Install Ubuntu on to a device (this could be a spare PC, a Raspberry Pi, a virtual

machine or even a USB drive). Document the installation process, noting how the OS

manages hardware and interacts with the user.

2 Research and compare:

a Choose another OS you are familiar with (for example Windows or macOS).

b Research the difference in how Ubuntu and your chosen OS handle key aspects

such as:

i user interface (including accessibility features)

ii file management

il memory management

iv software installation and updates.

3 Present your findings:

a Create a comparison table or chart to visually present the differences.

b Include a reflection on what you learned.

A1 Computer fundamentals

1 Run the simple Python “Memory Hog” program below, which continuously allocates memory

until the system runs out.

Important note: Running this script may cause your system to become unresponsive, as it

will use up all available memory. It's recommended to run this in a controlled environment,

such as a virtual machine. You can use Ctrl + C (Windows) or Cmd + C (Mac) to stop the

program running.

Python

memory hog = []

try:

while True:

Allocate a large list and append it to the

memory hog list

memory hog.append([0] * 10**¢) # Each list has

1 million zeros

print (f"Allocated {len(memory hog)} million items")

except MemoryError:

print ("Memory allocation failed! The system has run out

of memory.")

This script creates a large list and appends a million zeros each time it loops. When

the system can no longer allocate memory (due to running out of available RAM), a

“"MemoryError” exception is raised and will be output. You can monitor your system memory

using Task Manager on Windows or Activity Monitor on macOS.

Processes Ho Run new task

Processes Ho Run new task

M Windows Task Manager showing the memory usage of the program above as it runs

A1.3 Operating systems and control systems

2 File-management tasks

a Creating directories and files:

Step 1: Open the File Explorer (Windows) or Finder (macOS) on your computer.

Step 2: Navigate to a location where you can create a new directory (for example your

desktop or documents folder).

* Windows: Right-click > New > Folder

* MacOS: Right-click or Ctrl-click > New Folder

Step 3: Inside "ProjectFiles”, create three subfolders named "Reports”, “Data” and "Images”.

Step 4: Within the "Reports” folder, create three text files named “Report1.txt”,

“Report2.txt” and "Summary.txt”. Use a text editor (for example Notepad or TextEdit) to

create these files, and include a few lines of sample text in each file.

b Moving files:

Step 1: Move "Report2.txt” from the “Reports” folder to the “Data” folder.

* Windows: Drag and drop the file to the new location or right-click > Cut, then right-

click in the destination folder and select Paste

* MacOS: Drag and drop the file or use Cmd + C (copy) and Cmd + V (paste).

Step 2: Move “Summary.txt” from the “Reports” folder to the “Images” folder using the

same methods.

¢ Renaming files:

Step 1: Rename "Reportl.txt” to "FinalReport.txt”.

* Windows: Right-click the file > Rename

e MacOS: Click the file name once to select, then click again to edit.

Step 2: Rename the “Data” folder “ProjectData”.

d Deleting files and directories:

Step 1: Delete the “Images” folder along with its contents.

* Windows: Right-click the folder > Delete

* MacOS: Drag the folder to the Trash or right-click = Move to Trash.

Step 2: Recover the deleted “Images” folder from the Recycle Bin (Windows) or Trash (macOS).

* Windows: Open the Recycle Bin, right-click on the “lmages” folder, and choose “Restore”

* MacOS: Open the Trash, locate the “Images” folder, right-click it, and choose

"Put Back” to restore it to its original location.

3 Research how to complete the same tasks away from the GUI using the OS terminal

(Command Prompt / cd on Windows or Terminal on macOS).

4 Accessibility features

Complete one of the following tasks on your chosen OS.

a Explore accessibility features on Windows:

Step 1: Open the Control Panel by pressing Windows + R, typing control, and pressing Enter.

Step 2: Navigate to Ease of Access Center.

Step 3: Explore various accessibility features, such as Narrator (screen reader), Magnifier,

High Contrast Mode, Speech Recognition and On-Screen Keyboard.

Step 4: Activate and interact with at least two of these features, for example turn on

Narrator and Magnifier, and navigate through the desktop or a web page to understand

how these features assist users.

b Explore accessibility features on macQS:

Step 1: Open System Preferences by clicking on the Apple menu and selecting System

Preferences.

Step 2: Go to the Accessibility section.

Step 3: Explore various features, such as VoiceOver (screen reader), Zoom, Display (for

colour filters, invert colours), Speak Selection and Dictation.

Step 4: Activate and interact with at least two of these features, for example enable

VoiceOver and Zoom and use them to navigate the system or read through a document.

A1 Computer fundamentals

 Monopolize A1.3.3 Approaches for scheduling
resources: the control

or domination of the An operaring system needs scheduling methods to efficiently manage the execurion of

use of system resources multiple processes, ensuring optimal use of the CPU and other resources. Scheduling

(e.g. CPU, memory or determines the order in which processes are granted access to the CPU and their duration,
network bandwidth) by

a single process or user,

often to the detriment

of other processes

balancing the needs of various applications and maintaining system responsiveness. Without

effective scheduling, processes could experience significant delays or monopolize resources,

leading to poor performance and user frustration. In the following section, we will examine

or users, leading to several different scheduling methods, including first come first served, round robin, priority

inefficiency or system scheduling and multilevel queue scheduling, each with its own advantages and trade-offs.
slowdowns.

B First come first served
First come first served (FCFS) is one of the simplest

scheduling algorithms used by operating systems to

manage the execution of processes. In FCFS scheduling, the

processes are executed in the order they arrive in the ready

queue. When a process arrives, it is added to the end of the

queue. The CPU scheduler selects the process at the front

of the queue and assigns it to the CPU until it completes its

execution or moves to an I/Q wait state. Once the current

process is finished, the next process in the queue is selected,

and this continues until all processes have been executed.

The simplicity of FCFS makes it easy to implement and

understand. [However, it has some drawbacks, such as the

“convoy effect”, where short processes may be delayed by

long-running processes, leading to increased waiting time

and lower system throughput. This method is non-pre-

emptive, meaning that once a process is assigned to the

CPU, it cannot be interrupted until it completes, which can

B FCFS: waiting in line to be served cause inefficiency in certain scenarios.

Advantages Disadvantages

Simple and easy to implement Convoy effect can cause significant delays

Fair, as it processes requests in the order they arrive Non-pre-emptive nature can lead to inefficiency and

longer than average waiting times

In this example, P1 arrives first and is executed immediately, followed by P2 and P3 in the

order they arrive. Each process runs to completion before the next process begins.

Process Queue

P1 arrives P1

P2 arrives P1, P2

P3 arrives P1, P2, P3

Time

Process 0 1 2 3 4 5 6 7 8 9

P1

P2

P3

A1.3 Operating systems and control systems

B Round robin

Round robin (RR) is a pre-emptive scheduling algorithm

designed to provide fair time-sharing among processes.

Each process is assigned a fixed time slice, known as a

“gquantum”, during which it can execute. When a process’s

quantum expires, the CPU scheduler pre-empts the process

and places it at the end of the ready queue, then selects the

next process in line for execution. This cycle continues

until all processes are completed.

The primary advantage of round robin scheduling is that

it ensures a high level of responsiveness, as no process

can monopolize the CPU for an extended period. This

approach is especially effective in time-sharing systems

where multiple users or applications need to interact with

the CPU frequently. The length of the time quantum is

critical: if it is too short, the system spends too much time

B Round robin: each task takes a turn in a continuous cycle, switching between processes; if it is too long, it resembles

ensuring that each one gets equal time FCFS scheduling.

Advantages Disadvantages

Fair allocation of CPU time between processes Time quantum selection is crucial for performance

High responsiveness and improved system High context-switching overhead if the time quantum
interactivity is too short

Prevents any single process from monopolizing Potential inefficiency if processes frequently complete

the CPU their tasks within a single quantum

In this example, process P1 runs from time O to 2, then is pre-empted. Process P2 runs from

time 2 to 4, then is pre-empted. Then, process P3 runs from time 4 to 6 and is pre-empted. The

cycle repeats, with P1 running again from time 6 to 8, P2 from 8 to 10 and P3 from 10 to 12.

Process Queue

P1 arrives P1

P2 arrives P1, P2

P3 arrives P1, P2, P3

Time

Process 0 1 2 3 4 5 6 7 8 9 10 n

P1

P2

P3

A1 Computer fundamentals

B Priority scheduling
Priority scheduling is a method where each process is

assigned a priority level, and the CPU is allocated to the

process with the highest priority. Processes with higher

priority levels are executed before those with lower priority

levels. If two processes have the same priority, they are

scheduled according to their arrival order, typically

using FCFS. Priority can be either static (meaning it is

assigned when the process is created and does not change)

or dynamic (meaning it can change over time based on

various factors such as ageing).

The main goal of priority scheduling is to ensure that

critical tasks are executed as soon as possible, enhancing

the responsiveness of high-priority processes. However,

a significant drawback is the potential for low-priority

processes to suffer from starvation if high-priority

processes continually dominate CPU time. To mitigate

this, some systems implement ageing, which gradually
M An example of a priority lane at an airport, where passengers

with higher priority (such as first class ticketholders or those with increases the priority of waiting processes to ensure they

a disability) are given faster service eventually receive CPU time.

Advantages Disadvantages

Prioritizes important tasks, improving system Risk of starvation for low-priority processes

responsiveness for critical applications

Flexible, as priorities can be adjusted dynamically More complex to implement and manage than

based on system needs simpler scheduling methods

Priority inversion, where a lower-priority process
holds a resource needed by a higher-priority process,

can be an issue if not handled properly

In this example, P1 and P4, both high-priority processes, are executed first. After the high-

priority processes are completed, the medium-priority process P2 is executed, followed by the

low-priority process P3.

Process Arrival time | Priority level

P1 0 High

P2 1 Medium

P3 2 Low

P4 3 High

Time

Process 0 1 2 3 4 5 6 7

P1 (High)

P2 (Medium)

P3 (Low)

P4 (High)

A1.3 Operating systems and control systems

B Multilevel queue scheduling
Multilevel queue scheduling is a scheduling algorithm that partitions the ready queue into

several separate queues, each with its own scheduling algorithm and priority level. Processes

are permanently assigned to one of these queues based on certain characteristics, such as

process type, priority or memory requirements. Each queue may use a different scheduling

algorithm, such as FCFS or round robin, and the queues themselves are scheduled in a specific

order, often based on priority.

In this approach, higher-priority queues are given more CPU time compared to lower-priority

queues. For example, interactive processes might be placed in a high-priority queue scheduled

with round robin, while batch processes are placed in a lower-priority queue scheduled with

FFCFS. The CPU scheduler selects processes from the highest-priority queue first, moving to

lower-priority queues only when the higher-priority queues are empty.

Advantages Disadvantages

Flexibility in handling different types of processes Starvation of lower-priority processes if higher-

priority gueues are frequently occupied

Prioritizes critical and interactive processes, improving | Complex implementation and management

responsiveness for important tasks

Different scheduling algorithms can be tailored to the | Processes are permanently assigned to queues, which

needs of each queue might not be optimal if their behaviour changes

over time

In this example, processes in the high-priority queue (P1 and P2) are scheduled first using

round robin. Both P1 and P2 complete. The scheduler then moves to the medium-priority

queue (P3), and then to the low-priority queue (P4) only when the high-priority queue does

not have processes ready to run. However, it frequently checks back to the high-priority queue,

which is why P2 (high) runs again after P4 (low).

Queue priority Process type Scheduling algorithm Process queue

Q1 -High Interactive Round robin (time quantum = 2) P1, P2

Q2 — Medium Batch FCFS P3

Q3 - Low Background / idle FCFS P4

Time

Process 0 1 2 3 4 5 6 7 9 10 1 12

P1 (High)

P2 (High)

P3 (Medium)

P4 (Low)

(;Common mistake

Don't forget that context switching — when the CPU switches from one task to another - can

slow things down. Even though it allows for multitasking, too much switching can reduce how

efficiently the system runs because the CPU spends time saving and restoring tasks.

A1 Computer fundamentals

1 Explain the difference between first come first served (FCFS) scheduling and round

robin scheduling. How does the choice of time quantum in round robin affect

process performance?

2 What is the purpose of priority scheduling, and how does it differ from multilevel queue

scheduling? Provide an example of where each might be preferred.

3 In the context of operating systems, what is meant by context switching, and why is it

important in process scheduling?

4 Describe how multilevel queue scheduling works and discuss its advantages

and disadvantages.

5 How does the operating system ensure fairness in scheduling while also optimizing

performance? Discuss this in the context of round robin and priority scheduling.

6 What are the potential drawbacks of using a first come first served scheduling algorithm

in a multi-user environment?

7 Why might an operating system choose to implement a hybrid scheduling approach, and

what benefits does this provide?

Write a program to simulate different CPU scheduling algorithms and analyse their performance on process execution.

Here is an example of how you could implement FCFS scheduling in Python.

Python

Define a class to represent a process in the system

class Process:

def _ init_ (self, pid, arrival_ time, burst_time):

self.pid = pid # Process ID

self.arrival time = arrival time # The time at which the process

arrives in the system -

self . burst time = burst time # The total time required by the

process to complete execution

self.waiting time = 0 # Time the process has to wait before it

starts execution

self.turnaround time = 0 # Total time taken from arriwval to

completion (w;iting_time + burst_time)

Define a function to simulate FCFS scheduling

def calculate fcfs(processes):

start time = 0 # Variable to track the current time at which a process

= starts execution

Iterate over each process in the list

for process in processes:

If the current time is less than the process's arrival time,

the CPU remains idle until the process arrives

if start_time < process.arrival time:

start_time = process.arrival time

Calculate the waiting time for the process

A1.3 Operating systems and control systems 83

process.waiting time = start time - process.arrival time

Calculate the turnarcund time for the process

process.turnaround time = process.waiting time + process.burst time

Update the current time to reflect the process's execution

start_time += process.burst time

After all processes are scheduled, calculate the total and average

waiting / turnaround times

total waiting time = sum([p.waiting time for p in processes]) # Sum of

= all_waiting_times N

total turnarocund time = sum([p.turnaround time for p in processes]) # Sum

of all turnaround times N

avg waiting time = total waiting time / len(processes) # Average waiting

time

avg_turnaround time = total turnaround time / len(processes) # Average

turnaround time

Display the results in a table format

print ("Process\tArrival Time\tBurst Time\tWaiting Time\tTurnaround Time")

for process in processes:

print (£"{process.pid}\t{process.arrival time}\t\t{process.burst_time}\
t\t{process.waiting time}\t\t{process.turnaround time}")

Print the calculated average times

print (f"\nAverage Waiting Time: {avg waiting time:.2f}")

print (f"Average Turnaround Time: {avg turnaround time:.2f}")

Example process list to simulate FCFS scheduling

processes = [

Process (1, 0, 5), # Process 1 arrives at time 0 and requires 5 time

units to complete

Process (2, 2, 3), # Process 2 arrives at time 2 and requires 3 time

units to complete

Process (3, 4, 1), # Process 3 arrives at time 4 and requires 1 time unit

to complete

Process (4, 6, 7) # Process 4 arrives at time 6 and requires 7 time

units to complete

Sort the processes by their arrival time before running the FCFS algorithm

processes.sort (key=lambda x: x.arrival time)

Run the FCFS scheduling simulation

calculate fcfs(processes)

A1 Computer fundamentals

Interrupt service

routine (ISR): a

special function in a

computer system that

automatically executes in

response to an interrupt

signal, handling specific

tasks, e.g. processing

input from hardware

devices or managing

system events, before

returning control to the

main program.

4 Latency: the delay

between the initiation

of an action and the

corresponding response,

often referring to the

time it takes for data to

travel from its source

to its destination in a

network or systemn.

A1.3 Operating systems and control systems

A1.3.4 Interrupt handling and polling
Interrupt handling and polling are two fundamental techniques used by operating systems to

manage communication between the CPU and peripheral devices. Each method has its own

advantages and drawbacks that can affect system performance and efticiency, depending on

the context in which they are used.

M Interrupt handling
Interrupt handling is a mechanism where peripheral devices signal the CPU to gain its

attention and request service. When an event occurs, such as an input from a keyboard or

data from a network interface, the device sends an interrupt signal to the CPU. The CPU then

pauses its current operations, saves its state and executes an interrupt service routine (ISR)

to address the event. This method allows the CPU to remain idle or perform other tasks until

an event actually occurs, making it highly efficient in environments where events happen

sporadically or unpredictably. Interrupt handling ensures that the CPU only deals with events

when necessary, reducing unnecessary CPU cycles spent on checking for events.

However, the frequent occurrence of interrupts can introduce processing overheads due to the

context switching involved. Each time an interrupt is handled, the CPU must save its current

state and later restore it, which can be time-consuming and resource-intensive if interrupts are

too frequent. Additionally, handling a high volume of interrupts can lead to increased power

consumption, which is particularly critical for battery-powered devices. Despite these potential

drawbacks, the efficiency of interrupt handling in managing sporadic events and minimizing

CPU idle time makes it a preferred method in many real-time and interactive systems where

immediate response to events is crucial.

(‘Top tip!

An interrupt is like a doorbell ringing while you're busy warking. You stop what you're doing (pause

the current process), answer the door (handle the interrupt) and then return to your task. The

operating system manages these interruptions efficiently so that your work (the main process) isn't

significantly delayed.

H Polling
Polling, on the other hand, involves the CPU periodically checking each peripheral device

to see whether it requires attention. This method is straightforward and can be efficient

in systems where events occur at regular, predictable intervals. Polling ensures controlled

latency, as the CPU checks devices at predetermined times, making it suitable for real-time

applications where timely response is crucial. Polling can be implemented easily and provides

a simple mechanism to ensure that devices are checked regularly.

However, polling can lead to significant CPU processing overheads, as the CPU spends a

considerable amount of time repeatedly checking devices instead of performing useful work.

This continuous checking is resource-intensive and can detract from the system’s overall

efficiency. Additionally, polling is less power-efficient compared to interrupt handling, as the

CPU remains active even when there are no events to process. This constant activity can drain

the battery in portable devices more quickly than systems that utilize interrupt handling. In

environments where event frequency is low or unpredictable, polling can be highly inefficient

and wasteful, consuming CPU cycles without necessarily detecting any new events.

B Interrupts vs polling

Criteria Interrupts Polling

Event frequency Efficient for infrequent or unpredictable

events, as the CPU only responds when an
event occurs

More effective for regular, predictable

events, as the CPU checks devices at set
intervals regardless of event occurrence

CPU processing

overheads

Lower overhead for infrequent events

but can increase with high-frequency

interrupts due to context switching

Higher overhead due to constant checking

of devices, consuming CPU cycles even

when no events occur

Power source More power-efficient, especially for

battery-powered devices, as the CPU

remains idle until an event occurs

Less power-efficient, as the CPU remains

active and continuously checks devices,

leading to higher power consumption

Event predictability Best for unpredictable events, as the

system responds immediately to any

event occurrence

Suitable for predictable events, ensuring

regular checks at set intervals

Controlled latency Can provide quick response times but, if

interrupts are too frequent, it can lead to

variability in response times

Provides controlled latency with

predictable response times, as checks

occur at regular intervals

Security concerns Potentially more secure as the system can

quickly respond to critical events, reducing

the window for malicious activity

Less secure if polling intervals are too

long, as it may delay the detection of

critical events

The choice between interrupt handling and polling depends on the specific requirements and

constraints of the system. Interrupt handling is generally more efficient for sporadic events

and battery-powered devices, but can introduce overheads with high-frequency events. Polling

offers predictable latency and is straightforward to implement, but can lead to inefficiencies

and higher power consumption. Understanding the trade-offs between these methods is

crucial for designing effective and efficient systems.

(;Common mistake

Remember that specific context is very important when deciding whether polling or interrupt

handling is a better system solution. It is not a simple choice of one being better than the other.

Interrupts are great for events that happen unpredictably, while polling is better for regular,

predictable events. Make sure you understand the difference so you can choose the right method

for each situation.

B Real-world scenarios

Mouse and keyboard

When a user moves the mouse or presses a key, these devices generate interrupt signals that

prompt the CPU to immediately pause its current tasks and execute the appropriate interrupt

service routine (ISR). This ensures that user inputs are processed in real-time, providing

instant feedback and seamless interaction. For example, as a user types, each keystroke

generates an interrupt that the OS handles promptly, ensuring that characters appear on the

screen without delay. Conversely, using polling for these devices would require the CPU to

continuously check the status of the mouse and keyboard, leading to unnecessary processing

overheads and increased power consumption, especially in battery-powered devices like

laptops. Polling could also result in delayed responses if the CPU is busy with other tasks

when a user input occurs.

For basic embedded systems like simple data-entry terminals or kiosks, where user interaction

is infrequent and the system is primarily idle, polling might be sufficient. Polling at regular

A1 Computer fundamentals

intervals to check for user input can simplify the system design and avoid the overhead of

setting up and handling interrupts. This is acceptable in low-activity environments where

immediate response is not critical.

Network communications

‘When data packets arrive at a network interface card (NIC), they generate interrupt signals

that alert the CPU to process the incoming data immediately. This prompt handling ensures

that data is quickly received, processed and passed to the appropriate application, maintaining

smooth and efficient network performance. For instance, during a video conference, interrupts

enable real-time processing of audio and video data, ensuring minimal latency and high-

quality communication. Conversely, using polling for network communications would require

the CPU to continually check the NIC for new data, leading to increased processing overheads

and potentially missing incoming packets if the CPU is occupied with other tasks. This could

result in delays, reduced network performance and higher power consumption, especially in

devices like smartphones or tablets.

In scenarios where network traffic is minimal and predictable, such as a remote monitoring

system that periodically sends small data packets, polling can be more efficient. Polling at

regular intervals to check tor network activity reduces the complexity of interrupt handling

and is sufficient to handle the infrequent, predictable communication needs.

Disk input / output operations

When a disk drive completes a read or write operation, it generates an interrupt signal that

alerts the CPU to handle the data transfer immediately. This approach allows the CPU to

execute other tasks while waiting for the disk operation to complete, enhancing overall

system efficiency. For example, when a file is saved, the CPU can continue processing other

applications until the disk signals that the write operation is finished, at which point the CPU

promptly transfers the data to the appropriate location. Conversely, using polling for disk 1/0

operations would require the CPU to continuously check the status of the disk drive, leading

to significant processing overheads and reduced efficiency. The CPU would waste valuable

cycles repeatedly checking for completion, especially during lengthy disk operations, resulting

in slower system performance and increased power consumption.

In a system where disk access is predictable and infrequent, such as a data logger that writes

to a disk at fixed intervals, polling can be appropriate. Polling the disk tor readiness before

scheduled writes can simplify the implementation and eliminate the need for interrupt-driven

complexity, making the system easier to manage.

Embedded systems

Embedded systems, such as those in automotive control units or industrial machinery, often

need to respond quickly to sensor inputs and external signals. For example, in an automotive

airbag system, sensors detecting a collision generate interrupt signals that prompt the CPU to

immediately deploy the airbags. This rapid response is crucial for the safety and effectiveness

of the system. Conversely, using polling in this scenario would require the CPU to

continuously check sensor statuses, leading to increased processing overheads and potentially

missing critical events if the CPU is occupied with other tasks. This delay in response could be

catastrophic in time-sensitive applications.

In situations where events occur at regular, predictable intervals and the overhead of handling

interrupts is not justified, polling can be a better approach. For example, in a climate-control

system for a building, the temperature sensors might need to be checked at regular intervals to

maintain a constant environment. Here, polling would be advantageous.

A1.3 Operating systems and control systems -

Real-time systems

In real-time systems, the choice between polling and interrupt handling depends on the

specific requirements of the application. While interrupts are typically preferred for their

quick response times, there are scenarios where polling can be more suitable.

For instance, in a real-time system that controls an industrial robot performing repetitive

tasks at fixed intervals, polling can be more predictable and easier to manage. The robot might

perform sensor checks and actuator adjustments at precise, regular intervals, ensuring that

the tasks are executed in a controlled manner. This use of polling can simplify the design and

avoid the overhead associated with frequent context switching that comes with interrupts,

ensuring that the system meets its timing requirements consistently. In this scenario, the

predictability and regularity of the events make polling a viable option, as it ensures that

the system performs checks and adjustments at the exact required intervals without the

complexity of handling numerous interrupts.

In a real-time system like an automotive airbag deployment system, interrupt handling

is crucial. The system must respond immediately to sensor inputs indicating a collision.

When sensors detect a rapid deceleration or impact, they generate interrupts that prompt

the CPU to execute the airbag deployment routine instantly. This immediate response is

essential to ensure the airbags deploy in time to protect the occupants. In such critical

applications, the ability of interrupts to provide an immediate and high-priority response to

specific events makes them the preferred choice, as any delay in processing could result in

catastrophic consequences.

1 Explain the fundamental difference between interrupt handling and polling in terms of how

they manage CPU attention for peripheral devices.

In what scenarios might polling be more efficient than interrupt handling, and why?

Describe a situation in which interrupt handling could be preferred over polling,

considering factors such as power consumption and response time.

4 How does the frequency of events affect the choice between interrupt handling

and polling?

5 What are the potential drawbacks of using interrupt handling in a system with high

event frequency?

6 Discuss how power source (battery vs mains power) can influence the choice between using

interrupts or polling in a system.

7 How does the need for controlled latency impact the decision between using interrupt

handling and polling? Provide an example of a system where controlled latency is critical.

8 Explain how security concerns could affect the choice between interrupt handling and

polling in a networked system.

A1 Computer fundamentals

A1.3.5 The role of the operating
system in managing multitasking
and resource allocation (HL)
The operating system (OS) plays a critical role in managing multitasking and resource

allocation, ensuring that multiple processes can run concurrently and efficiently on a

computer system. Multitasking allows a system to perform multiple tasks seemingly

simultaneously by quickly switching between them, while resource allocation ensures that

each task receives the necessary resources (CPU time, memory, I/O devices) to execute

properly. This involves several key functions and faces numerous challenges.

H Task scheduling
Task scheduling is one of the primary responsibilities of the OS in a multitasking

environment. The scheduler decides the order in which processes are executed, aiming to

maximize CPU utilization and system responsiveness. As discussed in Section A1.3.3, there

are various scheduling algorithms, such as first come first served (FCFS), round robin, priority

scheduling and multilevel queue scheduling, each with advantages and drawbacks. The

scheduler must balance the need to provide quick response times for interactive processes

with the efficient processing of background tasks. This balancing act is crucial for maintaining

system performance and user satisfaction.

H Resource contention
Resource contention occurs when multiple processes compete for the same resources, such as

CPU time, memory or 1/0 devices. The OS must manage this contention to prevent conflicts

and ensure fair and efficient resource usage. Techniques like mutual exclusion are used to

manage access to shared resources. Mutual exclusion is a key concept used in concurrent

programming to prevent multiple processes from accessing a shared resource or critical section

simultaneously. This ensures that only one process can use the resource at a time, preventing

data corruption and ensuring consistency. Techniques for achieving murual exclusion include

using semaphores, locks and monitors.

Improper management can lead to such issues as resource starvation, where a process is

constantly denied necessary resources, or priority inversion, where a lower-priority process

holds a resource needed by a higher-priority process. The OS must implement strategies to

handle these conflicts effectively to maintain system stability and performance.

Semaphores

Semaphores are synchronization tools used to control access to shared resources in a

concurrent system. A semaphore is an integer variable that can be incremented (signal) or

decremented (wait) atomically. There are two types of semaphores:

B Binary semaphores (mutex): Can only be 0 or 1, effectively acting as a lock to ensure

mutual exclusion.

For example: There are two processes that need to write to the same log file. To prevent

both processes from writing to the file at the same time (which could cause data

corruption):

1 The semaphore is initially set to 1, indicating that the log file is available.

2 When Process A wants to write to the log file, it checks the semaphore. If the

semaphore is 1, Process A sets it to 0 (locking the resource) and proceeds to write to the

log file.

A1.3 Operating systems and control systems @

A
T
N
O
 T
H
 3 If Process B tries to write to the log file while Process A is still writing, it will find the

semaphore set to 0 and will be blocked until Process A is finished.

4 Once Process A finishes writing, it sets the semaphore back to 1, allowing Process B

to proceed.

5 Process B then sets the semaphore to 0, writes to the log file, and finally sets the

semaphore back to 1 when dome.

® Counting semaphores: Can take any non-negative value, allowing multiple instances of a

resource to be managed.

For example: There is a limited number of database connections (e.g. three connections)

available to a group of processes:

1 The semaphore is initialized with a value of 3, representing the three available

connections.

2 When Process A needs a connection, it checks the semaphore. If the value is greater

than 0, Process A decrements the semaphore by 1 and gains access to a connection.

3 Process B and Process C do the same, decrementing the semaphore by 1 each time they

gain access, leaving the semaphore value at 0 once all three connections are in use.

4 1If Process D then requests a connection, it finds the semaphore at 0 and must wait until

one of the other processes releases a connection.

5 When Process A finishes using its connection, it increments the semaphore by 1,

signalling that a connection is now available. Process D can then proceed to use

the connection.

Locks
Locks are tools used to make sure that only one process can use a shared resource at a time.

For example, if two programs want to write to the same file, the first one must “lock” the file

before it can start writing. If the file is already locked by another program, the second program

has to wait until the lock is released. There are different types of locks, such as binary locks

(also called “mutexes”™), which allow only one process at a time, and readers-writer locks,

which let multiple processes read a resource but only one process write to it.

Monitors

Monitors are tools used in programming to help manage access to shared resources safely. They

ensure that only one process can use certain variables or methods at a time, preventing conflicts.

A monitor acts like a container that holds shared variables and the code (methods) that works

with them. When a process uses a monitors method, it automatically locks the monitor, so no

other process can use it until the first one is done. Monitors also have condition variables that

let processes wait for certain events to happen and notify others when those events occur. This

makes it easier to manage and co-ordinate tasks between different processes sately.

Bl Deadlock
Deadlock is a problem in multitasking systems where processes get stuck because each one is

waiting for a resource that another process has, creating a cycle with no way to move forward.

To handle deadlocks, the OS can use different strategies:

B Deadlock prevention involves designing the system so that deadlocks can't happen.

B Deadlock avoidance, such as using the Banker’s algorithm, ensures a system only allocates

resources if it can guarantee that all processes can eventually complete without entering an

unsafe state.

B Deadlock detection means regularly checking for stuck processes and then taking steps to

tix the problem.

A1 Computer fundamentals

B Deadlock recovery might involve stopping one or more processes to break the cycle or

reallocating resources differently.

B Multitasking challenges
The challenges of multitasking extend beyond task scheduling and resource contention. The

OS must also manage context-switching efficiently, where the state of a currently running

process is saved so that another process can be executed. Frequent context switches can

introduce overheads, reducing overall system performance. The OS must also ensure data

consistency and integrity, particularly when multiple processes access shared data. This

involves implementing robust synchronization mechanisms to prevent data corruption and

ensure that processes do not interfere with each other.

1 Explain how the operating system uses task scheduling to manage multitasking. Why is it

important for maintaining system performance?

2 What is resource contention, and how does the operating system resolve it to prevent

issues such as resource starvation and priority inversion?

3 Describe the role of semaphores in managing resource allocation in a multitasking

environment. How do binary and counting semaphaores differ?

4 How does the operating system handle deadlock in multitasking systems, and what

strategies can be used to prevent, avoid or resolve deadlocks?

5 What challenges does the operating system face in managing context-switching, and

how does this impact overall system performance?

A1.3.6 The use of the control
system components (HL)
Control systems are fundamental in automating and regulating processes across a wide range

of industries, from manufacturing to robotics and environmental control. At the core of any

control system are various components that work together to achieve desired outcomes by

managing inputs, processing data and generating outputs. These systems rely on a precise

feedback mechanism to ensure that the process remains stable and meets the set objectives.

This section explores the key elements of control systems, including the roles of the input,

process, output and feedback mechanisms, as well as the critical components such as

controllers, sensors, actuators and transducers, and the control algorithms that drive them.

Understanding these components and their interactions is essential for designing effective and

efficient control systems.

B Input, process, output and feedback mechanism

Input

In a control system, the input is the initial signal or data received by the system, representing

the desired condition or target that the system aims to achieve. This input could be anything

from a set temperature in a heating system to the desired speed in a motor-control application.

The input is typically generated by a user, another system or an environmental condition, and

serves as the reference point for the system’s operation.

A1.3 Operating systems and control systems @

A
T
N
O
 T
H
 Output

The output is the result produced by the control system after processing the input. It

represents the actual state or action of the system, such as turning on a heater to reach a set

temperature or adjusting the speed of a motor. The output is directly influenced by the input

and the control process, and it is typically the element that can be observed or measured to

determine the effectiveness of the system in achieving its desired goals.

Feedback mechanism (open-loop and closed-loop)

Control signal Input .
System being

Control system controlled

M Open-loop control system

Input Control signal
System being

Control system controlled

Feedback loop

M Closed-loop control system

The feedback mechanism is a critical component in determining how a control system operates

and adjusts itself to maintain desired performance.

m Open-loop control: In an open-loop system, there is no feedback from the output back

to the input or process. The system operates solely based on the initial input without any

correction or adjustment based on the actual output. This type of control is simple and

used in situations where the relationship between input and output is straightforward and

predictable, such as in basic timers or simple heating systems.

m Closed-loop control: A closed-loop system, also known as a “feedback control system”,

continuously monitors the output and feeds this informarion back into the system to adjust

the process accordingly. If the output deviates from the desired input, the system makes

corrections in real time to bring the output back in line with the target. This type of control

is essential in applications requiring high accuracy and adaptability, such as temperature

control in HVAC systems, where the system must adjust heating or cooling based on actual

temperature readings.

B Key components

Controller
The controller is the central component of a control system that governs the operation by

processing inputs and generating appropriate outputs. It acts as the “brain” of the system,

implementing the control algorithm to make decisions based on the input data and feedback.

The controller compares the input (desired value) with the feedback from the output (actual

value) and determines the necessary actions to minimize the difference, or error, between

them. This decision-making process can involve complex calculations, adjustments or

commands that are sent to actuators or other system components to achieve the desired

outcome. Controllers can range from simple devices such as thermostats to complex

microprocessors used in industrial automation.

A1 Computer fundamentals

Temperature and humidity sensor

M Different types of sensors

A1.3 Operating systems and control systems

Touch sensor

Sensors

i

4

Proximity sensor Gas sensor

Sensors are devices that detect and measure physical quantities from the environment or the

system itself, such as temperature, pressure, speed or light. These measurements are then

converted into electrical signals that can be interpreted by the controller. Sensors serve as

the “eyes and ears” of the control system, providing the necessary data for the controller

to make informed decisions. The accuracy and reliability of the sensors directly impact the

performance of the control system, as they provide the critical feedback needed to adjust the

system’s operations. For example, a temperature sensor in a climate-control system constantly

monitors the room temperature, allowing the controller to adjust heating or cooling to

maintain the desired setpoint.

Actuators

Actuators are the components in a control system that carry out the physical actions or

adjustments in response to commands from the controller. They are responsible for converting

the controller’s electrical signals into mechanical motion or other forms of energy, such

as turning a valve, moving a robotic arm or adjusting a motor’s speed. Actuators are the

“muscles” of the control system, executing the tasks that directly impact the system’s output.

The performance and precision of actuators are critical in applications where exact control of

movements or processes is required, such as in manufacturing equipment or robotics.

Transducers
Transducers are devices that convert one form of energy into another, typically used to bridge

the gap between sensors and actuators and the control system. In many cases, a sensor or

actuator may not directly provide the type of signal that the controller can process or that is

needed to drive the actuator. A transducer converts these signals into a compatible form. For

example, a pressure sensor might detect mechanical pressure and convert it into an electrical

signal that the controller can interpret. Similarly, an actuator might require a specific voltage

or current that is supplied by a transducer. Transducers play a crucial role in ensuring

that all parts of the control system can communicate effectively, enabling accurate and

efficient operation.

A
I
N
O
 T
H
 (;Common

mistake

Avoid oversimplifying

the roles of control-

system components.

For example, don't

just say that sensors

and actuators

are important —

explain how they

waork together

within feedback

loops to maintain

system stability.

When discussing

multitasking,

don't just say that

resource allocation is

challenging — discuss

specific risks, such as

deadlock or priority

inversion, to show a

deeper understanding.

Control algorithm

The control algorithm is the set of rules or mathematical procedures that the controller uses

to determine the appropriate output based on the input and feedback it receives. It is the logic

that drives the decision-making process within the controller. Control algorithms can vary in

complexity, from simple proportional control, where the output is adjusted in direct proportion

to the error, to more advanced methods like Proportional-Integral-Derivative (PID) control,

which considers past, present and future errors to make precise adjustments. The choice of

control algorithm depends on the specific requirements of the system, such as the desired

accuracy, speed of response and stability. A well-designed control algorithm is essenrial for

achieving optimal performance and ensuring that the system meets its objectives efficiently

and reliably.

1 Explain the role of the controller in a control system. How does it interact with sensors

and actuators to maintain system stability?

2 Describe how a feedback mechanism works in a closed-loop control system. Why is

feedback essential for maintaining accuracy and stability?

3 Differentiate between open-loop and closed-loop control systems with examples.

Which type is more suitable for complex, dynamic environments?

4 What is the function of a transducer in a control system? Provide an example of a

transducer used in industrial automation.

5 Explain the importance of the control algorithm in a control system. How does it

impact the performance and reliability of the system?

A1.3.7 Uses of control systems (HL)

B Home thermostat
A home thermostat controls the room temperature by processing data from a temperature sensor

that continuously monitors the environment. This sensor provides input to the thermostat,

which compares the current temperature to the desired set point. If the temperature deviates

from the set value, the thermostat’s controller processes this information and decides whether to

activate the heating or cooling system to bring the temperature back to the desired level.

The system uses a closed-loop feedback mechanism, where the temperature sensor continually

feeds updated data back to the controller. As the heating or cooling system adjusts the

temperature, the sensor monitors the changes and provides real-time feedback to the thermostat.

B Automatic elevator control
An automatic elevator control system manages the movement of an elevator by processing

input from various sensors, such as those detecting the elevator’s current position, floor

requests and door status. These inputs are fed into the controller, which processes the data to

determine the elevator’s next action, such as moving up or down, stopping at a requested floor

or opening and closing the doors.

The system operates using a closed-loop feedback mechanism. As the elevator moves, sensors

continuously provide real-time updates to the controller about the elevator’s position and

speed. If the elevator needs to stop at a specific floor, the controller adjusts the motor’s

operation to slow down and halt the elevator precisely at the correct floor.

A1 Computer fundamentals

B Autonomous vehicles

Autonomous vehicles rely on a sophisticated control system that integrates key components

such as sensors, controllers, actuators and transducers to navigate and operate safely without

= x
[e]
=

-
human input. The system begins with various sensors, including cameras, LiDAR, radar

and GPS, which gather critical data about the vehicle’s environment, such as obstacles, road

conditions and traffic signals. This data serves as the input for the vehicle’s control system.

The controller, often powered by advanced Al algorithms, processes this input using control

algorithms to make real-time decisions about the vehicle’s speed, direction and braking.

The controller then sends commands to the actuators, which carry out these decisions by

controlling the steering, acceleration and braking systems.

The control system operates within a closed-loop feedback mechanism, where sensors

continuously monitor the vehicle’s actions and environment, feeding updated data back to

the controller. This allows the system to adjust its actions in real time, ensuring the vehicle

can adapt to changes such as sudden obstacles or shifting traffic conditions. Transducers play

a crucial role in converting sensor data into signals that the controller can process and in

translating controller commands into the appropriate actions by the actuators.

mergency braking / Pedestrian detection
/ Collision avoidance

Traffic sign Lane departure

recognition warning
Cross traffic alert

/

Surround view Surround view

Rear collision warning

Park assistance

B The sensors used for input and output by an autonomous vehicle

A1.3 Operating systems and control systems @

A
T
N
O
 T
H
 Bl Automatic washing machine

An automatic washing machine uses a control system to manage the washing process by

processing input from sensors that monitor water levels, load size and cycle progress. These

inputs are sent to the controller, which determines the appropriate actions, such as filling the

drum with water, agitating the clothes (the motion used by the washing machine to move the

clothes around in the water) or draining the water after the wash cycle.

The system operates with a closed-loop feedback mechanism, where sensors continuously

update the controller on the current state of the washing process. For instance, when the

water reaches the required level, the sensor signals the controller to stop filling and begin the

washing cycle. Similarly, the controller adjusts the duration and intensity of the spin cycle

based on the load size detected by the sensors.

B Traffic signal control system
A traffic signal control system manages the flow of vehicles at intersections by processing

input from sensors that detect the presence of vehicles and pedestrians and sometimes traffic

conditions. These inputs are fed into the controller, which processes the data to determine the

timing and sequence of the traffic lights — when to turn red, amber or green for each direction.

The system operates using a closed-loop feedback mechanism. As vehicles approach the

intersection, sensors detect their presence and provide real-time updates to the controller.

The controller then adjusts the signal timing based on current traffic conditions, such as

extending the green light for a congested lane or triggering a pedestrian crossing light when

needed. By continuously adapting to real-time data, the system optimizes traffic flow and

reduces congestion, contributing to smoother and safer movement through intersections.

B Irrigation control system
An irrigation control system automates the watering of agricultural fields or gardens by

processing input from sensors that monitor soil moisture levels, weather conditions and

sometimes the time of day. These inputs are sent to the controller, which determines when and

how much water should be delivered to the plants.

The system utilizes a closed-loop feedback mechanism, where the sensors continuously

update the controller on the current moisture levels in the soil. If the soil becomes too dry,

the controller activates the irrigation system to deliver the appropriate amount of water. Once

the desired moisture level is reached, the system shuts off the water supply. By responding

dynamically to the actual needs of the soil and plants, the irrigation system conserves water

and ensures optimal growing conditions, avoiding both under- and over-watering.

Bl Home-security system
A home-security system uses a control system to monitor and protect a property by processing

input from various sensors, such as door and window sensors, motion detectors and cameras.

These sensors provide real-time data to the controller, which assesses potential security threats

and determines the appropriate response, such as sounding an alarm, sending notifications to

the homeowner or contacting emergency services.

The system operates within a closed-loop feedback mechanism, where the sensors

continuously send updates to the controller about the status of the home. If a sensor detects an

intrusion, the controller immediately triggers the security protocols, such as locking doors or

activating cameras to record the event.

A1 Computer fundamentals

B Automatic doors
An automatic-door system uses a control system to manage the opening and closing of

doors by processing input from sensors that detect the presence of people or objects near the

entrance. These sensors, such as infrared motion detectors or pressure mats, send signals to

the controller, which then decides when to open or close the doors.

The system operates using a closed-loop feedback mechanism. As soon as the sensors detect

movement or pressure, they trigger the controller to open the doors. Once the person or object

has passed through and the sensors no longer detect any presence, the controller signals the

doors to close.

e .
o
Z
=<

optimizing traffic flow?

1 Describe how a control system operates in an autonomous vehicle. What components are

involved, and how do they interact to ensure safe and efficient operation?

2 Compare the control system used in a home thermostat with that of an irrigation control

system. What are the similarities and differences in how these systems maintain the

desired environmental conditions?

3 Explain the importance of a closed-loop feedback mechanism in the operation of an

automatic elevator control system. How does it ensure accurate and safe operation?

4 In the context of a trafficsignal cantrol system, discuss how the control system adapts

to changing traffic conditions. How does the use of sensors and feedback help in

5 Describe how a smart home-lighting system operates as a control system. Identify the key

components, including the controller, sensors, actuators and feedback mechanism, and

explain how they interact to automatically adjust the lighting in the home based on the

time of day and occupancy.

1 Simulate a traffic-light control system. If you have access to an Arduino and the components, you can build this for real.

Otherwise, you can use simulation software such as Tinkercad.

Tinkercad instructions:

Step 1: Click on Circuits from the dashboard, and then

click on Create new Circuit.

Step 2: From the component library, search for and add

the following components to your workspace:

[0 One Arduino Uno R3 with breadboard

[Three LEDs (Red, Yellow, Green) for one traffic light

[0 Three resistors (220 ohms each)

[0 Breadboard (optional, for better organization)

0 Pushbutton (optional, for triggering sensors)

* Connect the longer leg (anode - the bent leg) of

the red LED to pin 13 on the Arduino.

e Connect the other end of the resistor to the

ground (GND) on the Arduino.

O Yellow LED:

* Connect the anode of the yellow LED to pin 12.

* Connect the cathode to one end of a 220-ohm

resistor.

* Connect the other end of the resistor to GND.

O Green LED:

* Connect the anode of the green LED to pin 11.

+ Connect the cathode to one end of a 220-ohm

resistor.

* Connect the other end of the resistor to GND.

Step 4 (optional):

O Place a pushbutton on the breadboard.

01 Connect one side of the pushbutton to 5V.

[0 Connect the other side to a digital pin on the Arduino

(e.g. pin 7).

O Add a 10k-ohm resistor connecting the same side of

the pushbutton to GND (which acts as a pull-down

A1.3 Operating systems and control systems

resistor).

Set-up 1:

C++

// Pin assignments for LEDs

int redLED = 13;

int yellowLED = 12;

int greenLED = 11;

void setup() {

// Set up the LED pins as ocutputs

pinMode(redLED, OUTPUT);

pinMode(yellowLED, OUTPUT);

pinMode(greenLED, OUTPUT);

}
void loop() {

// Turn on the green light for 5 seconds

digitalWrite(greenLED, HIGH);

delay(5000); // wait 5 seconds

// Turn off green, turn on yellow for 2 seconds

digitalWrite(greenLED, LOW);

digitalWrite(yellowLED, HIGH);

delay(2000); // wait 2 seconds

// Turn off yellow, turn on red for 5 seconds

digitalWrite(yellowLED, LOW);

digitalWrite(redLED, HIGH);

delay(5000); // wait 5 seconds

// Turn off red, and repeat the cycle

digitalWrite(redLED, LOW);

A1 Computer fundamentals

Set-up 2 (with optional pushbutton):

C++

int buttonPin = 7; // Pin for the sensor (pushbutton)

int buttonState = 0;

int greenLED = 11; // Pin for green light

int yellowLED = 12; // Pin for vyellow light

int redLED = 13; // Pin for red light

unsigned long previousMillis = 0; // Variable to store the last time the light

// changed

const long greenlnterval = 5000; // Duration the green light stays on

// (in milliseconds)

const long yellowInterval = 2000; // Duration the yellow light stays on

// (in milliseconds)

const long redInterval = 5000; // Duration the red light stays on

// (in milliseconds)

// Define possible states for the traffic light

enum LightState {GREEN, YELLOW, RED};

LightState currentState = GREEN; // Start with the green light on

void setupf() {

pinMode(buttonPin, INPUT); // Set the pushbutton pin as an input

pinMode(greenLED, OUTPUT); // Set the green LED pin as an output

pinMode(yellowLED, OUTPUT); // Set the yellow LED pin as an output

pinMode(redLED, QUTPUT); // Set the red LED pin as an output

digitalWrite(greenLED, HIGH); // Initially turn on the green light

}
void loop() {

unsigned long currentMillis = millis(); // Cet the current time in milliseconds

buttonState = digitalRead(buttonPin); // Read the state of the pushbutton

switch(currentState) {

case GREEN:

// If the button is pressed or the green light has been on for the

// full interval

if (buttonState == HIGH || currentMillis - previousMillis >=
greenInterval) {

A1.3 Operating systems and control systems

digitalWrite(greenLED, LOW); // Turn off the green light

digitalWrite(yellowLED, HIGH); // Turn on the yellow light

currentState = YELLOW; // Change the state to YELLOW

previousMillis = currentMillis; // Reset the timer to the

// current time

}
break;

// The YELLOW and RED cases follow similar logic

case YELLOW:

if (currentMillis - previousMillis »= yellowInterval) {

digitalWrite(yellowLED, LOW);

digitalWrite(redLED, HIGH);

currentState = RED;

previousMillis = currentMillis; // Reset the timer to the

// current time

}
break;

case RED:

if (currentMillis - previousMillis >= redInterval) {

digitalWrite(redLED, LOW);

digitalWrite(greenLED, HIGH);

currentState = GREEN;

previousMillis = currentMillis; // Reset the timer toc the

// current time

}
break;

2

3

4

Observe how the control system manages the traffic-light sequence and adapts to changes (if a sensor is used).

Discuss how the components (LEDs, controller, optional sensor) work together as part of the control system.

Discuss the effectiveness of your traffic-light control system and how it could be improved or extended.

1 Simulate a motor control system where the speed of the motor is adjusted based on feedback from a sensor. It also has

a maximum speed that is set in code and should not be exceeded by the motor. If you have access to an Arduino and the

components, you can build this for real. Otherwise, you can use simulation software such as Tinkercad.

Tinkercad instructions:

Step 1: Click on Circuits from the dashboard, and then click on Create new Circuit.

Step 2: From the component library, search for and add the following components to your workspace:

0 One Arduino Uno R3 with breadboard

One potentiometer

H-Bridge motor driver (L293D)

One DC motor

One 9V battery O
o
o
o
a
o

A1 Computer fundamentals

Step 3:

O Arduino:

* Connect 5V to the bottom positive (red) power rail on the breadboard.

* Connect GND to the bottom negative (black) ground rail on the breadboard.

* Connect the bottom negative (black) ground rail on the breadboard to the top negative (black) ground rail on the

breadboard.

[Potentiometer:

* Connect Terminal 1 to the ground (GND) on the Arduino.

¢ Connect Terminal 2 to the 5V on the Arduino.

* Connect Wiper to AO.

O 9V battery:

* Connect the positive terminal of the battery to the top positive {red) power rail on the breadboard.

* Connect the negative terminal of the battery to the top negative (black) ground rail on the breadboard.

O H-Bridge motor driver (L293D):

* Placeit, ensuring that it straddles the centre gap between the two sides of the breadboard.

e Connect “Enable 1 & 2" to the 5V on the Arduino.

* Connect Power 1 to the 9V on the battery.

¢ Connect all four ground pins to the GND.

* Connect Power 2 to the top positive (red) rail on the breadboard.

¢ Connect Input 1 to pin 5 on the Arduino.

* ConnectInput 2 to pin & on the Arduino.

0O DC motor:

* Connect Terminal 1 to Output 2 on the L293D.

e Connect Terminal 2 to OQutput 1 on the L293D.

C++

int potValue; // Variable to store the potentiometer input value

int maximumSpeed = 128; // Maximum motor speed (should not be exceeded)

int forwardPin = 5; // Pin connected to the forward control input on the

// motor driver

int reversePin = 6

// motor driver

; // Pin connected to the reverse control input on the

A1.3 Operating systems and control systems

}

void setup() {

pinMode(forwardPin, QUTPUT); // Set the forward pin as an output

pinMode(reversePin, QUTPUT); // Set the reverse pin as an output

Serial.begin(9600); // Initialize serial communication at 9600 baud for

// debugging

void loop() {

potValue = analogRead(A0); // Read the analog value from the potentiometer

// (0-1023)

int motorSpeed = map(potValue, 0, 1023, 0, 255); // Scale the potentiometer

// value to match PWM range (0-255)

// Ensure the motor speed does not exceed the desired wvalue

if (motorSpeed > maximumSpeed) {

motorSpeed = maximumSpeed;

}
// Write the PWM value to the forward pin

analogiWrite(forwardPin, motorSpeed);

analogWrite(reversePin, 0); // Ensure reverse pin is off

// Print the motor speed value and desired speed to the serial monitor

Serial . print("Motor Speed: ");

Serial.print(motorSpeed);

Serial.print(" | Desired Speed: ");

Serial.println(maximumSpeed);

delay(100); // Short delay to make the serial output readable

2 Observe how the motor speed changes as the sensor value changes. For example, turning the potentiometer should

increase or decrease the motor speed, depending on the direction.

3 Modify the maximumSpeed in the code to see how the system responds to different target speeds or positions.

Describe the role of an operating system in organizing files within a directory structure.

Outline the steps an operating system takes to load an application into memory.

Describe the function of memory management within an operating system.

Describe the function of process scheduling in an operating system.

Describe how an operating system ensures security through user authentication.

Compare the advantages and disadvantages of using first come first served (FCFS) and

round robin (RR) scheduling algorithms in operating systems.

7 Explain how priority scheduling can cause some processes to be ignored or delayed in

an operating system. Describe a way to prevent this problem.

8 Discuss how event frequency and CPU processing overheads influence the choice

between interrupt handling and polling.

9 Describe the role of the operating system in preventing deadlock during multitasking.

10 Describe how an irrigation control system operates as a control system. What components

are involved, and how do they interact to ensure optimal watering conditions?

N

b

W
w
N

-

(2]
3]
(3]
(3]
[2]

(4]

(4]

[4]
(3]

[4]

A1 Computer fundamentals

Translation

A1.4 Translation

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A1.4.1 Evaluate the translation processes of interpreters and compilers

A1.4.1 Translation processes of
interpreters and compilers
Understanding the translation processes of interpreters and compilers is essential for grasping

how programming languages are executed by computers. Interpreters and compilers both

transform high-level code into machine-readable instructions, yet they do so through different

methods, each with unique implications for performance, error handling and development

efficiency. This section delves into the specifics of how interpreters and compilers function,

examining their respective strengths and weaknesses and how these impact the choice of

translation method for different programming scenarios.

H Interpreters

Source code Executable code

(high-level Interpreter (machine language) /

programming language) output

Get next

instruction

M The interpreter process

Mechanics

Interpreters translate high-level programming code into machine code line-by-line or

statement-by-statement, executing each line as it is translated. Unlike compilers, interpreters

do not generate an intermediate machine-code file; instead, they directly execute the source

code on the fly. This means that the interpreter reads the code, translates it and runs it

immediately, repeating this process for each line or block of code until the entire program has

been executed.

One key characteristic of interpreters is their ability to start executing a program without

needing to process the entire codebase upfront. This allows for immediate feedback, which

is particularly useful during the development and debugging phases. However, this line-by-

line execution can result in slower overall performance compared to compiled code, as the

interpreter must repeatedly translate and execute code during each run of the program.

(;Top tip!

An interpreter is

like someone who

translates each

sentence of a book

for you as you read,

providing immediate

understanding but

requiring them to

translate each line

every time you

revisit it.

In contrast, a

compiler is like a

translator who first

converts the entire

book into your native

language, allowing you

to read it smoothly

without needing

further translation, but

requiring you to wait

until the whole book is

translated before you

can start reading.

Use cases

Interpreters are commonly used in scenarios where quick testing and debugging are essential.

Languages including Python, JavaScript and Ruby are often interpreted, making them popular

choices for web development, scripting and rapid application development. The ability

to execute code immediately withourt a lengthy compilation process allows developers to

experiment and iterate quickly. Additionally, interpreters are ideal for educational purposes,

as they enable beginners to see the results of their code in real time, making it easier to

understand programming concepts.

Interpreters are also favoured in environments where portability is important. Since the

interpreter itself handles the execution, the same source code can be run on different platforms

without modification, provided the appropriate interpreter is available on each platform.

B Compilers

Source code

(high-level language) —

M The compiler process

Object code
Compiler (machine language)

Mechanics

Compilers, in contrast to interpreters, translate the entire high-level source code into machine

code in a single, comprehensive process betore the program is executed. This process involves

several stages, including lexical analysis, syntax analysis, semantic analysis, optimization and

code generation. The final output is a standalone executable file, typically in machine code or

an intermediate form like bytecode, which can be run directly on the target machine.

Omnce compiled, the machine code does not need further translation, allowing the program to

execute much faster than interpreted code. However, the initial compilation process can be

time-consuming, especially for large and complex programs. Additionally, because the entire

code must be compiled before execution, any errors in the source code need to be addressed

before the program can run, which can slow down the development cycle.

Use cases

Compilers are typically used in scenarios where performance is a critical concern. Languages

including C, C++ and Java (which compiles to bytecode for the JVM) are compiled, making

them well suited for system software, application development and situations requiring high-

performance execution, such as video games or real-time processing systems.

Compiled code is also advantageous in environments where security and resource control are

important. Since the machine code is pre-generated and optimized, it can be more difficult

for malicious actors to reverse-engineer, and the execution is less dependent on external

environments compared to interpreted code.

Compilers are often chosen when the software needs to be deployed across various

environments with different hardware specifications. The compilation process can be tailored

to oprimize the executable for specific architectures, resulting in better performance and

resource usage on the larget system.

A1 Computer fundamentals

—

B Advanced compilers and interpreters

Source code Bytecode interpreters
Java file

{program) Mechanics:

/% Bytecode interpreters operate by first translating high-

Compiler level source code into an intermediate form known as

_l—/ “bytecode”. This bytecode is not directly executed by

the machine’s hardware, but is instead run on a virtual

Bytecode «lass file machine (VM) or an interpreter that understands the

bytecode’s instructions. The bytecode serves as a compact,

platform-independent representation of the program,

JVM (Windows)

X

s ~

J

—

-

JVM (Linux)

~ N - ~
VM (Mac) which allows it to be executed on any system that has the

“

-~

\

I
appropriate VM or interpreter. The bytecode interpreter

| | reads and executes the bytecode instructions, often with

Machine code Machine code
Machine code some optimizarion, though it typically does so at a slower

pace than fully compiled machine code because each

M The Java Bytecode interpretation process

A1.4 Translation

instruction is interpreted at runtime.

Use cases:

Bytecode interpreters are widely used in scenarios where portability and cross-platform

compatibility are important. Java is a prime example, where code is compiled into bytecode

that runs on the Java Virtual Machine (JVM). This allows Java applications to run on any

platform with a JVM, making it ideal for enterprise applications, web services and mobile apps

that need to operate across diverse environments. Python also uses a similar approach, where

the source code is compiled into bytecode (with the .pyc extension) and then executed by

the Python interpreter. This makes bytecode interpreters useful in educational settings, web

development and scripting, where flexibility and ease of deployment are more critical than

raw performance.

Just-in-time (JIT) compilation

Mechanics:

Just-in-time (JIT) compilation is a dynamic approach that combines elements of both

interpretation and compilation. Initially, the source code is compiled into bytecode, which

is then interpreted by a virtual machine. As the program runs, the JIT compiler identifies

frequently executed sections of the bytecode — often called “hot spots” — and compiles them

into machine code on the fly. This machine code is then cached, so the next time the same

code is executed, the system uses the compiled version instead of interpreting it again. This

process allows JIT-compiled code to execute much faster than interpreted code, while still

offering the flexibility and platform independence of bytecode.

Use cases:

JIT compilation is particularly beneficial in environments where performance is critical, but

where the application also needs to be portable and dynamically optimized. The Java Virtual

Machine (JVM) and the NET runtime both use JIT compilation to improve the performance of

applications. This approach is especially valuable in long-running applications, such as servers,

where the overhead of JIT compilation is outweighed by the performance gains in subsequent

executions of the same code paths. JIT is also used in web browsers for JavaScript execution,

where it optimizes [requently used scripts to improve page load times and responsiveness. In

general, JIT compilation is well suited for scenarios where applications need to balance the

need for speed with the ability to run on multiple platforms.

B Evaluation of different translation processes

Error detection
Error detection varies significantly across these translation processes. Compilers offer the

most robust error detection because they analyse the entire source code before producing an

executable. This analysis ensures that all syntax and some semantic errors are caught and

must be resolved before the program can run, resulting in fewer runtime errors and a more

stable final product.

Interpreters detect errors at runtime, as they execute code line by line. This approach allows

developers to quickly identify and correct errors during development, which is especially

useful for testing and debugging. However, because errors are only discovered when the

specific problematic code is executed, there is a risk of encountering runtime errors that could

disrupt program execution unexpectedly.

Bytecode interpreters provide a middle ground. While they do compile source code into

bytecode before execution, allowing for some upfront error detection, errors may still occur at

runtime as the bytecode is interpreted. This combination of pre-runtime error-checking with

runtime interpretation can reduce the frequency of runtime errors compared to traditional

interpreters, but it does not offer the exhaustive error-checking of full compilation.

JIT compilation combines elements of both interpretation and compilation. While some errors

may still be detected at runtime, the JIT compiler’s ability to dynamically compile frequently

executed bytecode into machine code during execution can catch and optimize issues in

repeated executions, improving the reliability of long-running programs.

(.-Common mistake

Be careful not to underestimate the differences in error detection between interpreters and compilers.

With interpreters, errors are caught as the code runs, which means they can occur unexpectedly

during execution.

Compilers catch all syntax and some semantic errors before the program runs, preventing the

program from executing until these errors are fixed.

In these exercises, you will explore the differences in error detection between an interpreted

language (Python) and a compiled language (Java). By running and compiling short programs in

both languages, you will observe how and when errors are detected, providing insight into the

advantages and challenges of each approach.

1 Run the Python script below and observe what happens when the interpreter encounters

the error. What is the last line of output before the program crashes? What error message

is displayed?

Python

def greet (name) :

"
1
1
1
1
1
: print ("Hello, " + name + "!")

: greet ("Alice")

I # Intentional error: Trying to use an undefined variable
1
1
1

.
1
i
1
1
1
1
1
1
1
1
1

print ("The length of the name is " + str(len(name))) 1
1

A1 Computer fundamentals

2 Attempt to compile the program below and observe what happens when the compiler

encounters the error. Does the program compile successfully? What error message is displayed?

. Java
public class SimpleProgram {

public static void main(String[] args) {

System.out.println("Hello, World!");

// Intentional error: Missing semicolon

System.out.println("This line has a syntax error")

Compare the outcomes of running the Python script and compiling the Java program.

3 At what point is the error detected in each language?

4 How does the error-detection process affect the development workflow in each language?

5 What are the advantages and disadvantages of detecting errors at runtime vs at

compile time?

Translation time
Compilers require a considerable amount of time initially to convert the entire source code

into machine code before it can be executed. While this process may take longer, especially

with large projects, the payoff is that the compiled program runs significantly faster once the

translation is completed.

Interpreters, by contrast, execute code directly by translating it line by line. This allows the

program to run almost immediately, which is advantageous for quickly testing and iterating

code. However, because the code is translated during execution, programs with larger

codebases may experience slower overall performance.

Bytecode interpreters provide a balance between these approaches. The initial step of

compiling source code into bytecode is quicker than fully compiling it into machine code. The

bytecode is then executed more efficiently than direct interpretation of source code, resulting

in a compromise between start-up speed and execution efficiency.

JIT compilation goes a step further by converting bytecode into machine code dynamically

as the program runs. Although this introduces some runtime overhead, it enables the system

to optimize performance on the fly, particularly for code paths that are executed frequently.

This dynamic approach allows JIT to reduce initial translation time while improving execution

speed as the program continues to run.

Portability

Portability is a significant advantage of interpreters and bytecode interpreters. Since

interpreters execute source code directly, the same code can run on any platform with the

appropriate interpreter, making it ideal for cross-platform applications. Bytecode interpreters

extend this portability by compiling source code into a platform-independent bytecode, which

can be executed on any system with the appropriate virtual machine (for example Java's JVM).

This makes bytecode interpreters particularly valuable in environments where applications

must operate across diverse platforms without modification.

A1.4 Translation -

Compilers, however, produce machine code tailored to specific hardware architectures, resulting

in highly efficient but less portable executables. Each target platform may require separate

compilation, limiting the flexibility of deploying the same code across multiple environments.

JIT compilation preserves the portability of bytecode while enhancing performance. The

bytecode can be distributed across different platforms, and the JIT compiler dynamically

optimizes the execution for the specific hardware at runtime. This combination ensures that

applications remain portable while still benefiting from platform-specific optimizations.

(.-Common mistake

It is easy to overlook the importance of portability. Interpreters and bytecode interpreters allow

the same code to run on different platforms without modification, as long as the appropriate

interpreter or virtual machine is available. Compiled code is optimized for specific hardware,

making it less portable.

Applicability

The applicability of these translation processes varies depending on the requirements of

the project. Compilers are best suited for applications where performance is critical, such

as system software, high-performance computing and real-time systems. The upfront time

investment in compilation is justified by the high execution speed of the compiled code.

Interpreters are ideal for scenarios where rapid development, testing and iteration are essential,

such as in scripting, web development and educational environments. Their immediate

execution and ease of use make them suitable for applications where flexibility and quick

feedback are more important than raw performance.

Bytecode interpreters are commonly used in enterprise applications, web services and mobile

apps where cross-platform compatibility is crucial. They offer a tlexible solution that balances

the need for portability with efficient execution, making them suitable for environments that

demand both.

JIT compilation is particularly valuable in long-running applications and complex systems

where performance needs to improve over time. It is well suited for server environments,

dynamic web applications and platforms such as Java and .NET, where the balance of

portability, performance and dynamic optimization is critical.

Criteria Compilers Interpreters Bytecode interpreters JIT compilation

Error detection Comprehensive, with

all errors caught

before execution

Runtime errors detected as

code is executed line by line

Some errors are caught

before execution, but others

at runtime

Combines runtime

error detection with

dynamic optimization

Translation time High initial translation time,

but results in fast execution

Immediate execution, low

initial translation time, but

slower overall execution

Moderate initial translation

time, with moderately

fast execution

Balances initial translation

with dynamic compilation

for optimized execution

Portability Low; requires separate High; code runs on High; bytecode is platform- High; maintains portability

compilation for any platform with the independent and runs with platform-specific

each platform appropriate interpreter on any system with the optimizations at runtime

appropriate VM

Applicability Best for performance-critical | Ideal for rapid development, | Suited for cross-platform Well suited for long-running

applications and

system software

testing and cross-platform

scripting

applications with moderate

performance needs

applications requiring

dynamic optimization

A1 Computer fundamentals

Hl Example scenarios

Scenario Best translation method | Explanation

Rapid development | Interpreters * |nterpreters allow immediate execution of code,
and testing enabling quick iterations, debugging and real-time

feedback

* |deal for scripting languages such as Python

or JavaScript

Performance-critical | Compilers * Compilers optimize the entire codebase into

applications machine code before execution, resulting in highly

efficient and fast-performing applications

® Suitable for system software, gaming and real-time

systems using languages such as C or C++

Cross-platform Bytecode interpretersand | e Bytecode interpreters (e.g. Java's JVM) provide
development JIT compilation platform independence by compiling code into

an intermediate bytecode, which can run on any

platform with the appropriate virtual machine

® JIT compilation enhances performance by optimizing

frequently executed code at runtime, balancing

portability with execution speed

® |deal for applications such as enterprise software,

maobile apps and web services

Rapid development and testing

Example: A startup developing a prototype web application using Python.

The team needs to quickly test and iterate on their codebase, making adjustments on the

fly. An interpreter allows them to run their code immediately and see the results of changes

without waiting for compilation.

Performance-critical applications

Example: A company developing a real-time trading system in C++ that requires high-speed

dara processing with minimal latency.

A compiler is used to translate the entire codebase into optimized machine code, ensuring the

system performs at the highest efficiency possible.

Cross-platform development

Example: A software firm creating an enterprise-level application in Java that needs to run on

Windows, macOS and Linux environments.

By compiling the code into bytecode, the application can be run on any platform with the Java

Virtual Machine (JVM). To enhance performance, the JVM’s JIT compiler further optimizes

the application’s execution on each specific platform.

1 Compare the advantages and disadvantages of using a compiler vs an interpreter in

software development. (4]

2 Describe the process of just-in-time (JIT) compilation and explain how it combines

elements of both interpretation and compilation. [4]

3 Compare the error-detection capabilities of compilers and interpreters, and discuss the

implications for software development. [4]

A1.4 Translation

s
e
s
s
s
s
s
s
s
s
s
s
s
s
s
e
s
s
s
a
n
a
n
a
a
n
s

@ Linking questions
1 What role does multitasking in an operating system play in machine learning? (A4)

2 How might a conditional statement be constructed by Boolean logic gates in a circuit? (82) 3

3 What role does task scheduling in an operating system play in managing network traffic

and requests? (A1)

4 How does resource allocation in an operating system impact network performance

and stability? (A2)

5 What role do GPUs play in non-graphics computational tasks? (A4)

6 To what extent should computer systems not cause harm? (TOK)

A1 Computer fundamentals

A2 Networks

Network fundamentals

+ Computer

network: a system that

connects computers

and other devices

to share resources

(digital or physical)

and information.

Local area network:

a system that connects

computers and other

devices within a small

geographical area, such

as an office or home.

What are the principles and concepts that underpin how networks operate?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

> A2.1.1 Describe the purpose and characteristics of networks

» A2.1.2 Describe the purpose, benefits and limitations of modern digital infrastructures

» A2.1.3 Describe the function of network devices

» A2.1.4 Describe the network protocols used for transport and application

> A2.1.5 Describe the function of the TCP/IP model (HL)

A2.1.1 The purpose and
characteristics of networks
Welcome to computer networks. In recent decades, networks have become an all-pervasive

and integral part of our modern lives. We use networks to:

instantly communicate and collaborate with people around the world

access a wealth of information, entertainment and services at our fingertips

conduct business transactions, banking and online shopping with ease

u

u

u

B learn new skills, attend virtual classes and expand our knowledge

B remotely control and monitor our homes, cars and other connected devices

u share photos, videos and stories with family and friends in real time.

The power and ubiquity of computer networks have truly transformed the way we live, work

and play. In this chapter, we will delve into the inner workings of these complex systems that

have become so ubiquitous that we barely give them a moment’s thought — except when things

g0 wrong.

B Local area networks (LAN)
A local area network is a network of computers that are interconnected in a small geographical

location, typically limited to a single property such as a home, building or campus. These are

the oldest types of networks, though the equipment used in modern versions looks nothing

like the historical versions.

The purpose of these networks is to facilitate sharing resources between the different computers,

such as files, printers, applications and access to external networks, such as the interner.

LANSs typically have a high bandwidth internally, with speeds ranging from 100 Mbps

(Megabits per second) to 10 Gbps (Gigabits per second). Their small geographical range

means there are typically no issues with latency (the time delay for data to transmit across

the network).

Most homes and many corporate LANs now use a mix of wired Ethernet cables and wireless

networking technologies. Dedicated wireless LANs may sometimes be referred to as WLANS.

A2 Networks

Wide area network:

a system that connects

computers and other

devices across a large

geographic area, usually

connecting multiple

LANs together.

Personal area

network: a network

for personal devices

within the range of

an individual person,

usually connected

with Bluetooth.

A2.1 Network fundamentals

Headphones
\l/jnfgphone

"=
Desktop

//’\\“

8y, e e PE)
foathy connectivity cove

B Wide area networks (WAN)

Workstation

Wide area network

A wide area network provides for the interconnection of multiple local area networks over a

wider geographical distance. This connection distance may be across town, berween different

cities or even different continents. For example, this could be for sharing resources across

ditferent oftice branches of a company.

Classically, a WAN does not use the internet for this interconnection; instead it would have

its own dedicated networking infrastructure for long-distance connections, such as fibre-optic

cabling or point-to-point microwave Lransmission.

In practice, most modern WANSs use the existing infrastructure of high-speed internet and

establish a virtualized WAN through the use of virtual private networking rechnology,

discussed below.

B Personal area networks (PAN)

A personal area network refers to the devices that are

interconnected, centred around an individual person. A PAN

covers a very small range, and is typically limited to about

10 metres.

While USB cable-connected devices could be said to be part

of a person’s PAN, Bluetooth is the connectivity technology

most commonly associated with PANs. The interconnected

nature of your headphones, phone, camera, watch and

whatever other devices you may be carrying on your

person is what forms your PAN.

Printer

Virtual private

network: a secure

connection that runs

across the internet

to provide private

communication

between your network

and a remote server.

Internet: a global

network of computer

networks that are

interconnected with

each other and

communicate through

standardized protocols.

B Virtual private networks (VPN)

Physical channel Public network (internet)

Local

network

Virtual, private &

secure channel

P = =

Client Server

Virtual private networking refers to using public networking infrastructure to establish a

secure, private tunnel for your own communication purposes. The encryption enables users

to send and receive data across the public internet, as if their computing devices were directly

connected on their own private network.

There are many “VPN companies” that advertise their services to retail consumers to make use

of technology so that their internet browsing activities can appear to be taking place from a

different geographical location from where they truly are. While this is a usetul technology for

getting around geo-blocks and the like, it is a different use case from the corporate use of VPNs.

Companies use the secure tunnel of a VPN to provide employees with remote access to their

corporate networks as if they were physically present at their corporate headquarters.

VPNs help reduce the need for expensive dedicated networking infrastructure over long

distances, as would historically have been required for a WAN.

A2.1.2 The purpose, benefits and limitations
of modern digital infrastructures

B Internet

To suggest the internet is a core component of modern digital infrastructure 1s a bit like saying

water is wet. The internet is the global network. It connects millions of private, public, academic,

business and government networks to one massive global network. It provides easy access to a

vast amount of information and services, as well as tacilitating near-instant communications.

Commerce, businesses and global marketplaces are now extremely dependent upon it.

That said, the internet is far from perfect. In the 1970s and 80s, as key components of what would

become the internet were being developed, there was no master plan, and the sheer scale of the

result would have been impossible to imagine or foresee. This means there are vulnerabilities

baked into the core technologies on which the internet depends. It is susceptible to hacking,

denial of service, phishing and many other threats that we will look at later in this chapter.

A2 Networks

B Cloud computing

‘]\"“ The cloud is a mysterious-sounding name for a critical part of modern infrastructure devised

“I' by a marketing major somewhere. In essence, it is computing services being made available

for rent by large technology companies so that you don’t need to purchase your own physical

computer systems for servers and other infrastructure. Businesses and individuals can use the

internet to access the software and hardware provided by these technology companies in their

giant data centres.

There are some benefits to this approach. It means resource utilization can be easily scaled up

or down without large financial investment. It also reduces the IT maintenance costs for small

companies, as it is all part of the rented service.

Due to communication with cloud-rented systems occurring over the internet, thar clearly

means reliable, stable, high-speed internet connectivity is a must. Concerns about the security

and privacy of data held on these third-party systems can also be a legitimate concern, as these

systems are beyond your control.

Amazon Web Services, Google Cloud and Microsoft Azure are three big cloud providers, at the

time of writing,

(®Tok
Role of experts in consumption or acquisition of knowledge

Computer networks, such as the internet, rely upon the expertise of network engineers to keep the

system stable, efficient and effective. How has their contribution shaped the way we consume or

acquire knowledge?

@ Linking question

: How do cloud computing and distributed systems utilize networking to deliver services?

H Distributed systems

A distributed system connects multiple computers, or

nerworks of computers, together to achieve common goals.

They are more fault tolerant than other systems as, if one

node fails, there are other paths of connectivity through

which the rest of the network can continue to function.

This resilience comes at the cost of complexity, meaning

they are more difficult to design, manage and maintain. In

particular, ensuring data consistency across the various

nodes can be a challenge.

Peer-to-peer networking tools, such as BitTorrent, are

examples of distributed systems, as are Blockchains.

Distributed systems used by some large corporate networks

include Content Delivery Networks to help distribute
M With each dot representing a node on the network, a

distributed system has many different paths to traverse between

any two points content to users worldwide.

A2.1 Network fundamentals

M Mobile

telecommunications tower

l Edge computing

Edge computing brings the computational and data storage capacity closer to the physical

location where it is needed, to reduce latency and save bandwidth.

Large content delivery companies, such as Netflix, Spotify and the like, may use the edge

computing model to deploy clusters of servers in key cities so as to reduce the amount of

traffic that must travel back and forth to their main hubs. These servers can cache the most

commonly sought-after files for each region, significantly speeding up the service for those

customers, while preserving bandwidth for obtaining occasionally requested files that are not

in the local cache.

This increase in endpoints to the network presents an increase in attack vectors for an

adversary, so it comes with increased security and maintenance complexities.

— —

Edge node

BE

CLOUD

EDGE

Service delivery

Computing offload

loT management

Storage & caching

Edge node

L
L

ial di
M Edge computing places computational resources closer to the point of demand, which reduces
network load for the core servers in the cloud

)

B Mobile networks
Mobile telecommunications networks are now globally ubiquitous. There are many parts of the

world where mobile connectivity is the only connectivity available, as mobile networks can be

deployed without the cost of digging up the ground for cabling installations.

The mobility that these networks facilitate allows convenient access to information and

communication while on the go, and supports vast regions. That said, the necessity to place

towers everywhere and the complexities of geography do mean that mobile-phone networks

do have dead zones, which are areas without network coverage. Signal strength can vary, which

affects quality of service and bandwidth throughput.

At the time of writing, many countries are in the process of deploying fifth generation mobile

networks (5G), which will increase speeds to up to 10 Gbps for peak data, with an average of

100 Mbps.

A2 Networks

A2.1.3 The function of network devices

dbi_ ISP modem T b fc?r:nsc(ilse

PC

p—="=0

| = |
Router

PC

Apple Mac

computer Switch

Smartphone
l P @ Laptop

&
M Devices in a typical home or small office network

Printer

| |

0
O

Many home or small office networks might have only a single physical device that connects

all their devices to their internet service provider. This single device might be colloquially

referred to as the router or modem. The reality is that there are several logical devices at work,

even if they are all co-located in a single physical unit. We will examine the roles of these

different devices now.

(;Top tip!

Understand the purpose!

There are a lot of different devices that serve different roles within a computer network. It can be

easy to get them confused because most home networks have one physical device that plays many

of these roles. Focus on understanding each device type’s purpose and functionality. Ask yourself

why this device type is needed, and what problems it solves.

B Gateway
* Gateway: a device A gateway is, as the name implies, the gate or connection between two networks. These

that connects different networks may be communicating with two different protocols, and the gateway performs the

networks together and translation task required to convert between the protocols.

manages the traffic flow

between them; often

used to connect a local

network to the internet.

For instance, in a typical home environment where the gateway connects to the internet

service provider via a fibre-optic cable, it may be translating between EPON (Ethernet passive

optical network) and regular Ethernet.

Because it converts from one network to another, it primarily operates at the application layer

of the TCP/TP model (see Section A2.1.5).

A2.1 Network fundamentals

Firewall: a security

system (hardware or

software) that monitors

and controls incoming

and outgoing network

traffic based on a set of

security rules.

Router: a device that

forwards data packets

between computer

networks, routing the

traffic along the most

efficient path.

4 Network switch:

a device that connects

multiple other devices

within a single segment

of a computer network,

only forwarding data to

the specific device it is

intended for.

M Hardware firewall
The hardware firewall monitors and allows or denies incoming and outgoing network traftic

based on a predetermined set of security rules. The purpose is to be a safeguarding barrier

between the locally trusted network and the untrusted network of the internet.

Firewall rules are typically a list of IP addresses and / or TCP/UDP ports to allow or deny

traffic, based on the origin address or port and destination address or port.

The device functions at the transport and internet layers of the TCPF/IP model (see

Section A2.1.5).

Hl Modem
A modem is a modulator—demodulator. It is used to convert between digital and analogue

signals. A digital signal is modulated to encode digital data into an analogue form, transmitted

across the analogue medium, such as phone lines, and then demodulated at the other end to

extract the digital data.

The device functions at the physical, network interface layer of the TCP/IP model (see

Section A2.1.5).

B Network interface card
The network interface card is the hardware component on an individual device, such as a

laptop or mobile phone, that allows it to connect to the network. It may be a card that requires

connecting a physical cable, such as Ethernet twisted pair or fibre optic, or it could have an

antenna attached for connecting to a wireless nerwork.

The device functions at the physical, network interface layer of the TCP/IP model (see

Section A2.1.5).

Bl Router
The router directs the path packets of data take between networks. It inspects the network

address information in the packet header to determine the ultimate destination and uses that

to send the packet on the optimal route.

The router typically operates at the network interface layer of the TCP/IP model, as it uses

TCP/IP addresses to make its routing decisions (see Section A2.1.5).

Thinking skills: A network router on a rocket flight has been accidentally reset, so

that it is blocking legitimate traffic between the rocket and mission control. The task

to fix it falls to you. Search Coding Quest and select “Broken firewall”, or go to https://

codingquest.io/problem/29, to complete this activity.

B Switch
A network switch connects devices within a single segment of a network. The switch

effectively creates a network; it is the central spoke in a star-based network. A switch receives

incoming packets of data and sends them on to their destination within the local area network

using MAC addresses.

The switch operates at the network interface layer of the TCF/IP model (see Section A2.1.5).

A2 Networks

B Wireless access point
Wireless access points connect wireless devices together to form a network, in the same

way that a switch does for a physical network. They can also act as range extenders for

wireless signals.

A wireless access point operates at the network interface layer of the TCP/IP model (see

Section A2.1.5).

A2.1.4 Network protocols used for
transport and application
D T T PP T TS

@ Linking question
How do the concepts of binary and hexadecimal data structures relate to network

communications? (B2)
R rrmmImmImmImmmIImImnOmrmmInIImoIoIoOIhhOhDhhIhIoInInrhmhmmnrhrhIIIIrIIInhhhhh s

s
s
s
s
a
s
s
n

B Transmission Control Protocol (TCP) and User Datagram

Protocol (UDP)

0 15 16 31

Source port Destination port

Segquence number

Acknowledgement number 20 bytes

UJATP[R]S[F))
Data offset Reserved RIC|ISIS|Y]|] Window size

G|/K[H|[T N[N

Checksum Urgent pointer

2 Options

% Data

M TCP protocol

0 15 16 31

Source port Destination port T

8 bytes

UDP length UDP checksum

Data

i
M UDP protocol

A2.1 Network fundamentals

4 Protocol: a set of

rules and standards

that define how data is

transmitted and received

across a network for a

given application.

The Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) operate on the

transport layer of the TCP/IP model. That is, they are packets that are contained within the data

portion of an IP packet. Where IP is responsible for getting a packet from one computer system to

another, the TCP or UDP is responsible for getting data from one application to another.

These protocols facilitate multiple applications sharing a common network connection at

once. For instance, if a server is running both an email-server application and a web-server

application, the host operating system needs a means of determining which application to send

inbound traffic to for processing. This is where port numbers come in. Think of these as phone

extensions, or apartment numbers within a building address. To assist matters even further,

the industry has standardized default port numbers for commonly used applications. The

Simple Mail Transfer Protocol (SMTP) uses port 587 and Hypertext Transfer Protocol (HTTP)

uses port 80, whereas Hypertext Transfer Protocol Secure (HTTPS) uses 443 and the Secure

Shell (SSI) uses port 22.

TCP is a connection-oriented protocol. This means it establishes and maintains an active

connection with the remote server until the application programs on both ends have finished

exchanging messages. TCP ensures that data is delivered in order, without errors, and that

data is acknowledged upon receipt. If there is an error in the receipt of a packet (either it

doesn't arrive or is corrupted in some way), it is re-sent. The sequence number is used to

ensure packets are reassembled into their correct order by the receiving application, and the

checksum is used to ensure it is not corrupted during transmission.

UDP is a connectionless protocol. Data is transmitted, but there is no guarantee of reliability

or order of delivery. UDP is used for applications such as streaming video, where maintaining

speed and staying up to date with the broadcast is more important than the occasional missed

frame or subset of pixels.

Sometimes a light-hearted approach can help communicate the difference between two items.

Here is an anecdote that does the rounds of the internet comparing TCP and UDP:

A TCP joke:

Hello, would you like to hear a TCP joke?

Yes, I'd like to hear a TCP joke.

OK, I'll tell you a TCP joke.

OK, I'll hear a TCP joke.

Are you ready to hear a TCP joke?

Yes, | am ready to hear a TCP joke.

OK, I'm about to send the TCP joke. It will last 10 seconds, it has two characters, it does

not have a setting, it ends with a punchline.

OK, I'm ready to hear the TCP joke that will last 10 seconds, has two characters, does

not have a setting and will end with a punchline.

I'm sorry, your connection has timed out ... Hello, would you like to hear a TCP joke?

A UDP joke:

| know a UDP joke, but you might not get it.

You can programmatically experiment with communicating directly over TCPF/IP connections

with code similar to the following code.

A2 Networks

For a server that receives requests, processes them and then replies with a response:

P e e e .

' Python '

E import socket i

1 def run server(host="0.0.0.0", port=65432): 1

: # Create a socket object using IPv4 (AF_INET) and TCP protocol (SOCK STREAM) :

: with socket.socket (socket.AF INET, socket.SOCK STREAM) as s: :

: # Bind the socket to the address and port, and start listing :

! s.bind ((host, port)) :

: s.listen() :

| print (f"Server is running and listening at {host}:{port}") !

1 # Wait for connection. The code will pause here until connection 1

: conn, addr = s.accept() :

: with conn: :

: print (£"Connected by {addr}") :

i while True: .

: data = conn.recv(1024) # Receive up to 1024 bytes :

: if not data: :

1 break 1

: received message = data.decode() # Decode bytes to string :

: print (f'"Received message: {received message}") :

: new message = received message.upper/() :

: print (f"Converted message: {new message}") :

: conn.sendall (new_message.encode()) # Encode to send as bytes :

: if name == "_ main_ ": :

: run_server () :

A O S e — a

The following code is for a client that generates a request, sends it and then receives the

response. You must ensure the server code (above) is running, and the code below is updated

with the IP address of the server. You may need to adjust your firewall settings to allow this

demonstration to work.

I I N I L L I L 0 N S N, S 0 O, O T I P s, ey

1 1
' Python '

: import socket :

: def run client (server ip addr, server port=65432): :

1 # Create IPv4 and TCP socket 1

: with socket.socket (socket.AF INET, socket.SOCK _STREAM) as s: :

: s.connect ((server ip addr, server port)) :

: message = "Hello, server!" :

: s.sendall (message.encode()) :

: data = s.recv(1024) .decode() # Get response and decode from bytes to string :

! print (£"Received {data} from the server") -

: if name == "_main_ ": :

: server ip addr = "127.0.0.1" :

: run client (server ip addr) :

L R el e e

A2.1 Network fundamentals

B Hypertext Transfer Protocol (HTTP)
HTTP is the foundation of the world wide web. It is the protocol used for the transmission of

hypermedia documents, such as HTML, as well as associated text files (Javascript, CSS) or

binary files (images and so on).

HTTP is a stateless protocol. This means that each command is executed independently of

any previous commands, with no recollection or knowledge of them. The client (such as a web

browser) sends requests to the web server, which then responds with the requested resource or

an error code.

HTTP communication occurs as unicode text strings, so it is human-readable.

An example of an HTTP request from a browser might resemble the following text. The client

is sending a GET request for a particular file called index. html from the server hosting

www .example . com.

GET /index.html HTTP/1.1

Host: www. example -com

The associated reply from the web server follows. The server begins by indicating it is replying

using the HTTP v1.1 protocol and a status code of 200, which means OK. If there is an error

then a different status code would be received. For instance, if the requested file was not found

then a status of 404 would be sent.

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 1456

<!DOCTYPE html>

<html>

<heads>

<title>Example Website</titlex>

</head>

<body>

<hl>Welcome to the Example Website!</hl>

<p>This is the content of the index.html web page.</p>

</body>

</html=

This is a simple example; in practice, there is also commonly authentication information,

cookies and other data sent as part of the request or response.

A2 Networks

You can programmatically experiment with sending your own HTTP requests and receiving

the responses with Python by using the requests library. For instance, a simple program

may look like this:

Python

import reguests

r .
1 1
1 1
1 i
1 1
1 1
: response = requests.get ("https://www.example.com") :

I print (response.status code) 1
1 - 1
I print (response.text) 1
1 1
- o

The requests library is very powerful and even lets you download or upload text files and

binary files.

1f youd like to create your own web server that receives and processes HTTP requests, take a look

at Python’s Flask library. A simple web-server application may resemble the following code:

Python

from flask import Flask, render template, request, redirect, send file

app = Flask(_ name)

app.config["SECRET KEY"] = "code used to secure cookies from tampering"

Return templates/index.html

@app.route ("/")

def index page():

return render template ("index.html")

Return a binary file

@app .route (" /promotional video")

def promoticnal wvideo():

return send file("promotional video.mp4")

Use the URL path to supply a parameter

@app.route (" /user/<userid=")

def users (userid) :

return "User page for "+userid

Get values from an HTML form

@app.route (" /page2", methods=["GET", "POST"])

def page2():

HTML with <input name='person's will create a request.values|['person']

form = dict (request.values) # Convert all values into a dictionary

person = form["person"]

return f"Hello, {person}, welcome to my website"

Start the web server. These should be the last lines

if name == "_ main_ ":

b

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

app.run (host="0.0.0.0", port=80, debug=True) 1
1

A2.1 Network fundamentals

B Hypertext Transfer Protocol Secure (HTTPS)
HTTPS is the secure version of Hypertext Transfer Protocol. It is designed to ensure

communication is encrypted between the client and server to help protect against man-in-the-

middle attacks and eavesdroppers. There are three key features that HTTPS offers over the

original HTTP:

B Encryption: typically achieved through the use of either SSL or TLS encryption methods.

B Authentication: a digitally signed certificate is issued by the server so your client

application can verity it is connecting to the correct server (i.e. to protect against an

imposter posing as your bank website, for instance).

B Data integrity: ensures that the data sent and received is not altered in transit.

These ideas are discussed further in Sectrion A2.4.4.

B Dynamic Host Configuration Protocol (DHCP)

DHCP client DHCP server

o DHCPDISCOVER (broadcast)

Could anyone give me an IP?

DHCPOFFER (unicast or broadcast) o

Yes, do you want to use this IP: 172.16.2.103

o DHCPREQUEST (broadcast)

Yes, | really want to use this IP. Are you sure | can use it?

DHCPACK (unicast or broadcast) o

Yes, you can!
-«

DHCP is a network-management protocol. It is used most commonly when a computer first

joins a computer network (for example on system start-up). DIICP is the process by which the

computer requests and receives a valid IP address for use on that network. In many home and

small office networks, the device commonly known as the “router” also runs a DIICP server on

it, providing IP addresses to devices that connect to it within the home.

The client device broadcasts (that is, sends a message for all devices on the network to see) a

DIICP Discover message in which it provides its hardware MAC address and any preferences

regarding subnet, router, DNS server or IP address lease time.

A DIHCP server responds with a DIICP Offer message to assign an IP address from within

a defined pool of addresses available to it. IP addresses are “leased” to devices for a specific

period, after which the device must request to renew its lease. This process allows for

reconfiguration and reuse of addresses. The offer also includes information about subnet,

domain name server and other matters.

In the home or small office space, there are a number of addresses that have been reserved

for private internal nerworks to use. These addresses are not used by valid servers and are not

routable on the public internet. These address ranges are:

A2 Networks

m 10.0.0.0 to 10.255.255.255

m 172.16.0.0 to 172.31.255.255

B 192.168.0.0 to 192.168.255.255

Networks that use these addresses for their internal devices rely on services such as network

address translation to connect to the public internet. See Section A2.3.1 for a discussion

about this.

A2.1.5 The function of the TCP/IP model (HL)

- The TCF/IP model is a conceptual approach to

Application - - - understanding the different roles and responsibilities of

layer networking communication. It largely supersedes and

streamlines the previously used OSI model.

Transport - - The TCF/IP model is broken down into the four layers:

layes; the network interface layer (also known as the “physical

layer™), the internet layer, the transport layer and, finally,

the application layer.

Ml Application
The application layer is the topmost level and is where the

Network protocols used by actual applications reside. They include

iitetfacallavey applications such as HTTP and HTTPS for web browsing;

FTP for file transfer; SMTP and POP3 for email; and DNS.

The application is responsible for using and correctly

A
T
N
O
 T
H

b

-

M The allocation of bits in the TCP and UDP protocols.

forming messages transmitted through these protocols.

Hl Transport
On initiation of a communication request from an application, the operating system uses the

transport layer to help ensure the data gets from the correct source application to the correct

target application at the destination.

The two primary protocols that reside in the transport layer are TCP (Transport Control

Protocol) and UDP (User Datagram Protocol).

The transport layer receives data from the application layer, segments it and handles error

detection and correction (if using TCP), along with retransmitting lost packets.

These segments or datagrams are then transferred to the internet layer.

B Internet

. The internet layer is responsible for managing the

movement of packets across the network, including

‘ ’ ensuring they are routed to the correct destination.

Source IP address To do this, it receives segmented data from the transport

layer, encapsulates it into packets and decides on the best

Destination IP address route for the packets to travel across networks. These

packets are then forwarded to the network interface layer,

which takes care of transmitting the bits to the next

M TCP/IP data as packets physical device in the chain.

A2.1 Network fundamentals

A
T
N
O
 T
H
 M Network interface

The network interface layer manages the process of physical transmission of the data across

the networking hardware and transmission media. It includes the protocols and hardware

necessary to deliver the data across the local media, and aspects such as Ethernet, WiFi and

physical network components including routers, cabling and switches.

The network interface layer receives data packets trom the internet layer and converts them

into a form suitable for transmission over the network, such as over Ethernet cabling or WiFi.

Hardware addressing, such as MAC addresses, is managed by this layer.

(.-Common mistake

It's common to confuse which protocols operate at which layer of the TCP/IP model. Keep a clear

map of where TCP, UDP, HTTP, HTTPS and DHCP fit within the layers.

1 Which network is typically used to cover a geographical area that spans a city or a group

of buildings?

a PAN b LAN ¢ WAN d VPN

2 Which type of modern digital infrastructure would be most suitable for handling real-time

data processing close to data sources?

a Internet

b Cloud computing

¢ Distributed systems

d Edge computing

3 Which device is responsible for enabling multiple computers to connect to the internet

through a shared connection?

a Modem

b Switch

¢ Router

d Network interface card (NIC)

4 Which protocol ensures delivery of packets and is used for activities requiring high reliability,

such as file transfers?

a TCP b UDP ¢ HTTP d DHCP

5 In the TCP/IP model, which layer is primarily responsible for routing and forwarding packets?

a Application

b Transport

¢ Internet

d Network interface

6 Describe one characteristic that distinguishes a virtual private network (VPN) from other

types of networks.

7 Identify one major limitation of using cloud computing in digital infrastructure.

8 Describe the primary function of a wireless access point in a network.

9 Describe three main differences between HTTP and HTTPS.

10 Describe the role of the application layer in the TCP/IP model.

A2 Networks

Network architecture

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A2.2.1 Describe the function and practical applications of network topologies

» A2.2.2 Describe the function of servers (HL)

> A2.2.3 Compare and contrast networking models

> A2.2.4 Explain the concepts and applications of network segmentation

(®ToK
Organizing and classifying knowledge

If the sum of human knowledge is being stored on servers accessible through the global

interconnected computer network known as the “internet”, how does the organization and

classification of the internet, and its constituent networks, affect what we know?

BRI T T

@ Linking questions

1 How can network types, or transmissions, impact database performance? (A3)

2 How do network topologies influence machine learning algorithms (A4)?

.

.

.

.

.

.

.

.

I T

Workstation

= - A2.2.1 The function and
—_— ! practical applications of

== network topologies
Workstation

\ / Network topology refers to the physical layout and

structure of the nodes and connections within a network.

= > |Hubiswit(h — - l Star topology
= = In a star topology, all nodes connect to a single central

Printer Workstation . . .
device (such as a network switch). The central switch

I manages the task of routing messages between the various

nodes. This approach is very common in homes and small

offices, where a single switch provides all the capacity

@ === needed for the various devices that are connecting.
- Workstation

Workstation

M Star topology has all the individual nodes emanating from a

central point

A2.2 Network architecture

A few factors to consider with the star topology include:

Reliability: If the central device fails, the network fails.

Bandwidth speed: While each device has its own dedicated connection to the hub, the

overall throughput speed is dependent on the processing capacity of that central hub.

Scalability: The central switch typically has a limited number of ports or connections that

it can handle, possibly limiring expansion to accommodate future needs.

Collisions: There is minimal risk of data collision as every node has its own

dedicated connection.

Cost: Quite low if only a few nodes are needed; however, costs can increase if the capacity

limits of the central node are exceeded and upgrades are required.

(.-Tup tip!

Each topology (star, mesh, hybrid) serves different needs. Be sure to understand why each one is

more suitable than another for specific situations. Learn the diagrams of the different topologies to

visualize how nodes are connected, as that provides a crudial understanding of how the flow of data

is impacted if a node fails.

Bl Mesh topology

In a mesh topology, every node has an immediate, direct connection to every other node.

While most often depicted as a full mesh, partial meshes do also exist.

Meshes are suitable for large environments where reliability of individual pathways may be a

concern. Critical infrastructure, such as military and aviation environments, is more inclined to

use a mesh topology to help ensure robust resilience of the network against any point of failure.

Wireless mesh systems, such as Meshtastic, have also started

to gain popularity among tech hobbyists and as a means of

providing connectivity in remote and disaster-prone areas.

Factors worth considering in a mesh environment include:

B Reliability: Highly reliable and robust against the

failure of any individual node or communication path.

B Bandwidth speed: High, given that each node can

communicate directly with its intended target node.

m Scalability: Adding new nodes is expensive as cabling

and infrastructure must be run to all other nodes on

the network.

1
o B Collisions: Minimal risk of collisions due to the direct

connections available.

m Cost: High due to all the additional cabling and

networking infrastructure required for all the

redundant connections.

M In a mesh topology, all nodes are interconnected to all
other nodes

A2 Networks

H Hybrid topology

The hybrid topology combines a mix of two or more other topologies. It makes maximum use

of the advantages of each approach while minimizing the downsides. Hybrid approaches are

suitable for large enterprises and telecommunications networks. In the illustration, a mesh

approach is used for the interconnection of different base (t%)) Sensor
stations to provide reliability and durability between

() (
Sensor

node

base stations, and then each base station manages a star

topology for the individual devices connected to it.

Factors to consider for a hybrid approach include:
@

(1) B Reliability: Generally quite high; if a node fails, it only

SE:ISW affects the clients immediately connected to it, but not
node

other parts of the network.

® Transmission speed: This is dependent on

the exact configuration and mix of topologies

deployed; bottlenecks can be an issue if it is not

carefully designed.

Sensor m Scalability: Typically highly scalable and adaptable to
Sensor node

node Router changing needs and circumstances; a small addition to
node

Sensor anetwork could start as a spoke on a star, and then later
node . .

be upgraded to a full node in a mesh if needed.

Base station B Collisions: Again, this is dependent on the

B The hybrid topology is a mix of the mesh and star topologies; configuration and mix of topologies.
key points in the network are interlinked like a mesh, and then

each of those points is the central point for its own star of

connected nodes more efficient over the long run.

A2.2.2 The function of servers (HL)

(;Top tip!

It is very common for one physical computer acting as a server to have many server-based

applications running on it simultaneously. The one computer could have a web server on port 80

and 443; an FTP server on 20 and 21; an SSH server running on port 22; and a DNS server on 53.

B Cost: Likely to be higher to get started but generally

In this section, “server” relates more to the separate server software applications rather than

separate physical devices.

. A server is a computer that provides a service to other computers or devices on a network.
Server: a computer

or device on a network
that manages and network with backup power supplies and other systems.

Typically, these are dedicated machines housed in a specialized room, centrally located on the

provides various

network resources

on behalf of other

computers {clients) on

the network.

This section looks at some of the common application servers frequently seen on networks. We

will look at each from a perspecrive of their function, scalability, reliability and securiry.

Il Domain name server (DNS)
A The domain name server provides a translation service that converts human-readable domain

Domain name: a

human-readable name
assigned to a specific IP writing, hachettelearning.com translates to 78.136.36.226.

names into the IP addresses that are required for routing purposes. For example, at the time of

address on the internet, The client device sends the DNS request to its configured DNS server. This can either be
.. www.example.com. specified manually in the operating system settings, or it can be provided via DHCP when the

A2.2 Network architecture @

= =
o
=
L

A
T
N
O
 T
H
 device connects to the network. If the DNS server that receives the request does not know the

answer to the query, it asks its DNS server, and so on up the chain until a server can provide a

response. The DNS server then typically caches that response for a while in case it receives the

same query.

On Windows computers, the nslookup terminal command allows you to execute DNS

queries, and on macOS machines use the host command. In Python, there is a built-in dns .

resolver module that you can use.

Python

import dnspython as dns

import dns.resolver

domain = "www.example.com"

try:

resolver = dns.resolver.Resolver()

answer = resolver.resolve(domain, "A")

for record in answer:

print (record.to text()

except dns.resclver. NXDOMAIN:

print (£"The domain {domain} does not exist.")

except dns.resolver.Timeout:

print (£"The DNS lookup for {domain} timed out."

except dns.resolver.NoAnswer:

print (£"No answer found for {domain}.")

except Exception as e:

print (£"An error occurred: {e}")

B Scalability: DNS uses a distributed database and caching,. This system allows for the global

domain name system to manage with ease the billions of requests made per day.

B Reliability: DNS is a mission-critical system for the internet. Any downtime, particularly

from the upstream servers, can affect many thousands or millions of client devices. With

that in mind, the system is built with a lot of redundancy in place, where each server

typically has at least three alternatives to query.

B Security: Given the global importance of DNS, it is frequently the subject of malicious

behaviour. The key domain name servers around the world require extremely

robust security systems including firewalls, intrusion detection systems and

other countermeasures.

Bl Dynamic Host Configuration Protocol (DHCP)
As previously discussed in Section A2.1.4, DHCP is responsible for assigning TP addresses and

network settings to devices that request them on the network.

M File server
A file server provides a centralized location to store, access and manage files. There are several

commonly used approaches for this.

FTP (file transfer protocol) or SFTP (secure FTP) are protocols that are commonly used for

accessing remote systems for the transfer of files. FTP usually involves opening dedicated FTP

transfer utility software to perform the task.

A2 Networks

For an office environment, it is usually preferential for the storage of a file server to be present

within the file, folder and disk structure of the local computer operating system as a mounted

drive letter (Windows) or folder (macOS). To do this, protocols such as Server Message Block

(SMB), Network File System (NFS) or Apple Filing Protocol (AFP) are more commonly used.

L £
o
Z
-

B Scalability: File servers are typically scaled through adding drives to provide additional

storage, and upgrading the speed of the network interface cards when they are shared

between many client devices.

B Reliability: RAID (redundant array of independent disks) is a technology that allows tor

combining multiple physical disk drives into one logical unit. This can be used to pool the

storage together to create one larger drive (for example two 1 TB drives pooled together to

present as if they were a 2 TB drive), or to provide backup redundancy in the case of one

drive failing. RAID also allows for a hybrid approach to mix both functions together.

B Security: Access permissions need to be carefully managed to protect against unauthorized

access or alteration of data. These access permissions can typically be set at a file or folder

level, and can have either read-only permission or read—write permission.

B Mail server
The mail server stores emails for local users on a network, and exchanges them with other

mail servers when users send an email. Commonly used protocols include the SMTP (Simple

Mail Transfer Protocol) and POP3 (Post Office Protocol).

B Scalability: Mail servers need to handle large volumes of emails and attachments

efficiently. Many companies contract out their mail systems to third-party providers to help

manage the demand.

B Reliability: As a critical system, email servers typically employ such mechanisms as queues

and redundant systems to help maintain reliability.

B Security: Strong security systems for email are essential, given the frequency with which

email is used as an attack vector for spam, phishing, pharming, malware attachments and

other security threats. Best practice now involves the use of email authentication protocols

such as SPF (Sender Policy Framework) and DomainKeys Identitied Mail (DKIM). SPF

allows domain name owners to specify which email servers are authorized to send emails

on their behalf. DKIM allows domain name owners to sign their emails digitally with a

cryptographic signature that can be checked by the recipient to ensure the email has not

been tampered with en route.

B Proxy server

In the business and commercial world of contracts, a proxy

is a person you authorize to act on your behalf.

In that vein, a proxy server is traditionally used to act

as the client device on your behalf to browse the greater

internet. Its caching functionality is useful as it means it

/ Internet Reverse proxy \

Use“ Web servers

can remember content for you from different addresses and

return that request immediately without having to generate

additional external traffic. Organizations such as schools

and offices may use a proxy server for requests coming

from their internal network to reduce costs. As the request

being received by a server appears to have originated from

B Reverse proxy server

A2.2 Network architecture @

A
I
N
O
 T
H
 the proxy and not the actual client, students may also use proxy servers installed on computers

at home as a means of getting around school network filters.

Proxy servers can also be configured to act on behalf of the server rather than just client

devices. This arrangement is known as a “reverse proxy”. This arrangement is typically used to

help distribute the load of incoming requests among a range of servers, and also to cache the

common responses given to save calculation and processing load on the servers themselves.

W Scalability: Reverse proxy configurations can dramatically improve the scalability of a web

server to handle signiticantly more traffic than would otherwise be the case.

B Reliability: When used to balance loads, a proxy server provides fault tolerance capacity.

B Security: A proxy server provides an additional layer of security by shielding internal client

devices from direct exposure to the internet.

B Web server
A web server hosts web pages and related content, and serves them to client devices across

the internet. The web pages can either be static documents (such as HTML) or dynamically

produced at runtime from programming code, in which case the web server sends the

request to the application in the style of a reverse proxy, and then sends the reply back to the

original client.

Nginx is a popular open source web server.

B Scalability: Modern web servers are quite efficient but, when demand for their services is

high, the load is typically distributed across mulriple servers, with a reverse proxy server

acting as the public interface.

B Reliability: If the web server fails, then all websites it is hosting also fail. As web-based

applications become critical infrastructure for some organizations, the importance of

reliable web server software grows.

B Security: A web server needs to be secured against attacks such as distributed denial of

service. Additionally, modern web servers provide encryption and authentication through

SSL to run HTTPS, rather than just HTTP trattic, for a sater browsing experience. Let’s

Encrypt (https:/letsencrypt.org) provides a {ree service for obtaining the SSL certificates

needed to offer HTTPS browsing through a web server.

A2.2.3 Networking models

H Client-server
The client—server model is where devices take on the role of either being the client that

requests a network service, or the server that provides a network service.

Benefits:

B Centralized control: It is easier to manage and update systems from a central point.

W Scalability: It is easier to add a more powerful server (for example with increased

processing, memory or storage) if it is a central system.

Efficiency: A server can be optimized for a specific task.

Security: It is much easier to manage security risks if everything is run from a central point.

A2 Networks

Drawbacks:

m Single point of failure: If the server goes down, all services attached to it fail.

B Single point of risk: If the security of the server is compromised, all data and services

managed by the central point are also exposed and vulnerable.

B Cost: Creating a central point to manage all the requests means a significant investment in

expensive hardware and software to cope with that demand.

Real-world applications:

B Web browsing: Clients (browsers) request web pages from servers.

B Email: Email servers manage the sending and receiving of emails to and from

client applications.

B Online banking: Central servers handle transactions, authentication and data storage,

offering high security and reliability.

@ B Peer-to-peer
In the peer-to-peer model, there is no server that co-ordinates the network services; each

device is both a client and a server, and communicates with all other peers. The provision of

network services is distributed across the devices.

The challenge with peer-to-peer is co-ordination, since there is no obvious “authoritative”

source to query where to find certain services.

/ \ Benefits:

. & m Decentralization: There is no single point of failure or risk.

m Cost effective: There is no need to spend money on expensive hardware or software, as the

load is shared among all the clients themselves.

B Scalability: As the size of the network grows, so too does the scale of services it can

provide. Each additional peer also adds additional capacity.

B Direct sharing: Services can be provided directly from one computer to another,

reducing hottlenecks.

Drawbacks:

B Co-ordinarion: Maintaining settings, security patches and synchronization of data across

multiple nodes on the network can be very challenging.

B Reliability: Since services are being provided by peers, which are just client devices on the

network, if someone turns their device off, then it is no longer providing whatever services

it was supplying to the network. Availability of systems and resources on the network can

vary without much notice.

(‘Common mistake

Networking models

Don't oversimplify the distinction between client-server and peer-to-peer models. Understand the

nuances involved that might make one more suitable than the other for specific scenarios. Failing

to consider scalability and maintenance aspects can lead to incomplete understandings.

A2.2 Network architecture

Network

segmentation: dividing

a computer network

into smaller, distinct

subnetworks to improve

performance, security

and management.

Real-world applications:

® BitTorrent: Files are shared directly between users without a co-ordinated central hub.

B Voice over IP: The data for calls and video conferencing are routed directly from client to

client, rather than creating massive data bottlenecks for a centralized server.

B Blockchain: Bitcoin and other blockchains operate decentralized databases across many

nodes to help guard against tampering with the transacrion ledger.

A2.2.4 Concepts and applications
of network segmentation
Network segmentation refers to logically splitting a larger network into smaller, more

manageable parts. Each of these segments can be isolated from each other to provide better

security, performance or management of system resources.

Two commonly used approaches for network segmentation are subnetting and virtual local

area networks (VLANSs).

Subnetting divides a network into subnetworks based on unique ranges of IP addresses. For

instance, a school may place statf devices on 192.168.0.X, and student devices on 192.168.1.X.

Each subnet can share the same networking infrastructure, such as wireless access points,

switches and cabling, but would not “see” the devices on the alternate subnet. This approach

allows devices to be logically grouped based on department, function or geography, and can

allow for different security policies to be applied, depending on the organization’s needs.

Virtual LANs are another way of separating one physical network into two logical networks

without requiring duplication of infrastructure. They create distinct broadcast domains that

are mutually isolated unless explicitly allowed to communicate via routing. Traffic is isolated

to members of the VLAN only. Where a client device may change its subnet by manually

changing its IP address, VLANs are more secure and typically use MAC addresses or login

credentials to determine which VLAN a device gets connected to. Because a virtual LAN is a

logical construct rather than a physical one, it is worth noting that a VLAN could extend over

numerous physical networks (such as over a VPN link).

Whichever method is used, segmentation reduces overall network traffic within each segment,

allowing for more efficient data transmission. Network congestion for high bandwidth

applications can be contained to an individual network segment, resulting in the other

segments within the network being unaftfected. Security is also significantly enhanced, as

visibility of servers and their services can be restricted to particular VLANs.

(‘Common mistake

Network segmentation

Mixing up segmentation, subnetting and VLANs is common. Make sure you define and distinguish

each clearly.

A2 Networks

A2.2 Network architecture

Which network topology is most beneficial in a large campus setting due to its scalability

and robustness?

a Star

b Mesh

¢ Hybrid

d Ring

Which type of server is responsible for translating domain names into IP addresses?

a DHCP server

b DNS server

¢ File server

d Web server

Which networking model typically involves one or mare central servers that manage

data and resources for client devices?

a Client-server

b Peer-to-peer

¢ Hybrid

d None of the above

What is the primary purpose of implementing network segmentation within a

corporate environment?

a To increase the number of devices on the network

b To enhance security and performance by reducing congestion

¢ To eliminate the need for routers

d To simplify network management

Outline three benefits of using a star topology in a home office setting.

Describe one function of a proxy server for each of:

a a large university campus

b a personal home.

Outline how a reverse proxy functions, in contrast to a normal proxy. What are its benefits?

Explain a key disadvantage of using a peer-to-peer network model for online banking.

Explain how VLANs contribute to network segmentation.

Data transmissions

GCommon

mistake

IP addressing

Don't mix up the

address constructions

of IPv4 and IPv6. Be

sure to know the

length and formatting

of each version of IP

addresses.

4 |P address: a set of

numbers that uniguely

identifies each computer

based on the Internet

Protocol (either version 4

or version 6).

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A2.3.1 Describe different types of IP addressing
y
w
v
y

networks (HL)

A2.3.2 Compare types of media for data transmission

A2.3.3 Explain how packet switching is used to send data across a network

A2.3.4 Explain how static routing and dynamic routing move data across local area

A2.3.1 Types of IP addressing

B TCP/IP version 4 and version 6

0 4 8 16 31 bit

Version IHL TOS Total length

Identification Flags Fragment offset

TTL Protocol Header checksum 20
bytes

Source address

Destination address

‘ 0-40
<7 Options bytes

Up to

Data #65,515

bytes

M Structure of IP version 4

@ Linking question

in machine learning algorithms? (TOK)

Are similar ethical principles needed when transmitting data over a network as when using data

IR T

The key difference between IP version 4 and version 6 is the size of the address space. IPv6 was

designed to deal with the long-anticipated problem of IPv4 addresses running out.

IPv4 uses a four-byte or 32-bit address, which is why it is typically displayed as four

numbers separated by dots, where each number is in the range of a byte, 0-255, for example

192.168.0.1. Given there are 2% possible addresses using these numbers, it means IPv4 is

limited to approximately 4,300,000,000 nodes on the network.

A2 Networks

TPv6, on the other hand, uses 16 bytes or 128 bits for its addresses. These addresses are

typically displayed as eight groups of four bytes written in hexadecimal form, such as

2001:0db8:85a3:0000:0000:8a2e:0370:7334. Having 2" addresses equates to a

capacity for a staggering 340,282 ,370,000,000,000,000,000,000,000,000,000,000 nodes.

M Public and private addresses
The key difference between public and private addresses is their visibility on the public internet.

TP addresses that are used on the public internet must be globally unique. They are typically

assigned to websites, external-facing servers and routers that connect to the internet. The

allocation of these public internet addresses is managed by ICANN (the Internet Corporation

for Assigned Names and Numbers).

Private IP addresses used within a private network are not directly routable on the global

internet. They are commonly used in home and corporate networks for devices such as

computers, tablets and internal servers. Traffic from these devices must be converted to a

public address by the router to get on to the public internet.

ICANN has reserved certain ranges of addresses as private, non-routable addresses for

organizations to use for their internal networks. These are:

m 10.0.0.0 to 10.255.255.255

m 172.16.0.0 to 172.31.255.255

B 192.168.0.0 to 192.168.255.255

| 1Pv6 has FC00:0000:0000:0000:0000:0000:0000:0000 to

FDFF-FFFEFFFEFFFEFFFEFFFT:-FEFFF-FFTE

B Static and dynamic addresses
Static IP addresses are those that are permanently assigned to a device. The device uses the

same IP address every time it connects to the network. Static IP addresses are essential for

servers so that client devices know where to locate them on a network.

In contrast, a dynamic IP address is one that is assigned to a device when it connects to the

network. This process is overseen by a DHCP server that allocates connecting devices an

address from a predetermined pool of addresses that it has available to it. Dynamic addresses

help reduce overheads by more efficiently utilizing a limited number of IP addresses in

environments where devices frequently connect and disconnect.

B Network address translation (NAT)
Network address

translation: modifies .

the IP addresses of (;Top tlp!

data packets as they Network address translation
pass through a router

or firewall; this helps

improve security and

manages the limited

number of IP addresses

available through IPv4

by allowing multiple Network address translation is a process whereby networks translate private 1P addresses to

Make sure you have an appreciation of, and recognize the role of, network address translation

(NAT). Its capacity to allow multiple devices on a private network to share a single IP address for

internet communications has kept the internet as a viable, functioning system. Its role in conserving

global IP address space cannot be overstated.

drvli)cels to s:a re a single public IP addresses, and vice versa. The process enables multiple devices on a network to share
global IP address.

a single public IP address.

A2 .3 Data transmissions

NAT has been crucial for the effective operation of the internet as it still remains highly

dependent on IPv4 addresses, which have been all but exhausted. It also helps provide an

additional layer of security for home and small office networks by hiding internal IP addresses

from the external network.

A2.3.2 Types of media for data transmission

(;Tup tip!

Side by side

Create a side-by-side comparison table for fibre-optic, twisted-pair and wireless media, with a focus

on bandwidth, cost and installation complexity. Consider the roles for each type, such as fibre optic

in data centres, twisted pair in offices and wireless for campuses, homes and mobile set-ups. Pay

special attention to how security varies across the different media, particularly the susceptibility to

eavesdropping or interference.

M Fibre-optic cabling
Advantages:

B Bandwidth: Fibre optic has the highest data-transmission rates of the media under

consideration in this section. Active research continues to make it even better, but current

technology already allows for terabits per second to be transmitted.

® Interference susceptibility: As tibre-optic cabling uses light waves to transmit data, it is not

susceptible to electromagnetic interference, making it ideal for environments with electrical

noise, such as that generated by motors.

B Range and attenuation: Fibre-optic cabling is the medium of choice for the intercontinental

submarine cables that run across the ocean floor, due to its very low signal loss over long

distances. Commercially available single-mode fibre-optic cables can easily run distances of

tens or hundreds of kilometres before a repeater is required.

B Security: Fibre-optic cables are very difficult to “tap” without detection, making them an

excellent option where security is a concern.

Disadvantages:

® Cost: Fibre-optic cables are generally more expensive than other forms of cabling, both

with respect to the cabling materials and supporting hardware infrastructure and the

installation labour time.

B Reliability: Fibre-optic cables are more fragile than metallic cables and are prone to damage

it improperly handled. Specifically, they have a limited radius tor the maximum bend they

can safely operate under.

B Installation complexity: The issues regarding supporting infrastructure requirements and

proper handling of the cables themselves tend to result in fibre-optic cables requiring more

specialized skills and equipment for installarion and maintenance operarions.

A2 Networks

A2 .3 Data transmissions

M Twisted-pair cabling
Advantages:

Cost: Twisted-pair cabling has been a well-known and established technology for decades

now. It is widely and cheaply available.

Installation complexity: Installation is considerably less complex than for fibre optic.

A do-it-yourself approach is frequently taken for installation of simple home and small

office networks, with telephony technicians typically only required for outdoor and other

complex environments.

Reliability: The cables are vastly more flexible, meaning they can be safely and reliably

installed into tight spaces.

Disadvantages:

Bandwidth: Twisted-pair cabling is typically an order of magnitude slower than the

equivalent in fibre optic. That said, it is still quite adequate for most home and small

office arrangements, offering Gigabit bandwidth performance. Twisted-pair cabling

also significantly outperforms wireless nerworks. The highest quality twisted-pair cable

currently available — Category 7 Ethernet — is rated for speeds of up to 10 Gb/s.

Interference susceptibility: Given it is a cable that uses electrical signals to transmit

data, twisted-pair cabling is quite susceptible to electromagnetic interference from the

surrounding environment. This is particularly the case where shielding has not been

wrapped around the cables.

Range and attenuation: The range of twisted pair is considerably less than fibre optic.

Category 6a twisted-pair Fthernet cables typically only have a range of approximarely

100 metres.

Security: As it is easier to tap into than fibre-optic cables, twisted pair poses a more

significant security risk; however, an attacker must still get in close physical proximity to

the cable, unlike with wireless.

B Wireless transmission
Advantages:

Installation complexity: There are no physical cables, so installation complexity and cost

are significantly lower than for physical cable media.

Cost: Wireless networks can be a cost-effective means of covering a large area where

cabling is not practical.

Reliability: Wireless networks provide mobility for devices to connect from, whatever

the location, provided it is within the signal range. That said, reliability can be impacted

through radio interference, discussed below.

Disadvantages:

Bandwidth: In practical scenarios, the total available bandwidth is shared among

connected devices, so the individual device throughput varies based on network conditions

and the number of devices connected. Typically, a total bandwidth capacity of several

Gh/s is available for the devices to share. This is lower than the equivalent twisted pair

or fibre optic, and these also come with their own dedicated bandwidth, rather than a

shared connection.

Interference susceptibility: Wireless is very susceptible to interference from other wireless

or radio signals, and physical obstructions can significantly aftect signal quality.

4 Packet switching: a

methad of sending data

in small blocks, known

as “packets”, across a

network. Fach packet

can take a different path

to reach its destination.

(;Common

mistake

Confusing routers

and switches

Ensure you don't

misunderstand the

functional differences

between routers and

switches in network

data transmission.

(;Top tip!

Is your microwave safe?

If your home WiFi drops out when someone is using your kitchen microwave oven, it means it

is leaking microwaves and should be urgently repaired or replaced! Microwave ovens operate at

2.4 GHz, which is one of the two frequencies used by WiFi (the other being 5 GHz). The reason

microwaves use 2.4 GHz is that it is the resonant frequency of water so, by emitting high-energy

waves, it excites the water molecules in your food, which causes it to heat up.

WiFi technology is considered safe to use, even though it also relies on 2.4 GHz, as the strength

of the radio signals is measured in milliwatts, as opposed to most microwave ovens, which are

pumping 800 to 1000 watts of energy into the surrounding environment.

B Range and attenuation: Range is typically limited to a maximum of about 90 metres in

clear, line-of-sight conditions. Strength and quality of the signal deteriorate with distance

and physical obstructions, such as walls.

B Security: Wireless technologies have a long and complicated history of being security

risks since an attacker does not have to be physically present at a network connection to

intercept the signal. Often, attackers can sit in a car outside the home or office and collect

all your WiFi signals over the air. A lot of effort has been made to add layers of encryption

to modern WiFi to mitigate this problem, but risks still exist.

A2.3.3 Packet switching

(;Top tip!

Account for packet loss

When considering the workload associated with packet switching and routing, be sure to

remember that not all data transmitted is received at the other end. The seeming reliability of

the modern internet is actually only due to all the error checking that occurs behind the scenes

accounting for packet loss. This can have a significant impact on the performance of a network,

espedially where electromagnetic or other interference sources may abound.

Packet switching is the foundation of most modern networking technologies, including the

internet. It involves breaking large pieces of data into smaller, more manageable chunks called

“packets”. These packets are transmitted across the network independently of each other and

reassembled into the original whole at the destination. Packet switching is a highly scalable

tool that allows efficient use of network resources, in contrast to older technologies such as

circuit switching, where an entire dedicated channel or cable was used for the duration of a

communication session (which deprived other devices of being able to use it).

The full process includes:

B Segmentation: Data (such as a file or email) that needs to be sent across the network is

broken into smaller pieces known as “packets”. These packets contain a chunk of the data,

plus information known as the “header” that contains source and destination network

addresses and other control information. The MTU (maximum transmission unit) size of a

packet is typically 1500 bytes, including header information.

A2 Networks

Routing: the process

of selecting paths

along a computer

network to send

network traffic, based

on the routing table,

network performance

and protocols.

A2 .3 Data transmissions

m Packet header: The header of each packet contains information that helps ensure the

efficient and reliable transmission of the packet across the network, such as the source

and destination 1P addresses. Additionally, each packet contains a sequence number that

is used to reorder the packets at the destination into their correct sequence, so that the

content of the data file is not jumbled. The header also contains error-checking information

such as checksums, which calculate whether the packet has arrived correctly, or whether

the source has to be asked to retransmit it.

B Routing: Each packet is sent through the computer network independently of any of the

other packets associated with it. This means that packets for the same file may travel

different paths across the network, based on conditions such as congestion and route

availability. This flexibility in routing helps networks oprimize usage and provide for a

robust environment that is more tolerant of failures within the network.

B Routers: These devices determine the optimal path for each packet passing through to

reach its destination. They inspect the packet destination address and use routing tables

and algorithms to decide the next hop in the network to forward each packet to.

m Switches: These devices are typically operated within local area networks and direct

packets between devices on the same network. They use the MAC addresses to process and

forward packets.

B Reassembly: Once the packet has reached its destination, it is checked for sequencing

information and then reassembled into the original file in the correct order. Importantly,

because no two packets are guaranteed to be transmitted along the same path, it is

impossible to assume that packets have arrived in the correct order. Addirionally, some

packets may have been lost or corrupted in transmission, so the source needs to be

requested to retransmit those packets.

A2.3.4 Static routing and dynamic
routing in local area networks (HL)
Network routing refers to the algorithms that determine the path for traffic in a network, or

between and across multiple networks. Within local area networks, rouring decisions can be

handled by one of two methods: static or dynamic routing.

 Static routing
Static routing is where the network routes are manually configured and entered into a rouring

table by the network administrator. These routes do not change except by manual update.

This method is easy to implement in small networks where the routes do not change much,

but can be too complex to manage in networks with hundreds or thousands of nodes. Static

routing provides predictability in the behaviour of your network, and does not require

additional processing or bandwidth due to one router communicating with another for route

discovery and optimizarion.

In addition to the challenge of scale, other issues around static routing include the lack of

fault tolerance as, if a connection fails, static routing does not automatically attempt to find a

workaround; and the maintenance workload associated with it, as every small change in the

network requires manual updating of the routing table.

T =

o
Z
<

A
T
N
O
 T
H

R1

M Dynamic routing coping with node failure

R2

R4

l Dynamic routing

[a
]

-
8

¢ Wireless

b Twisted pair

1 Which type of IP addressing is specifically designed to provide a larger address space

than its predecessor?

a |IPv4

b IPv6

Static IP

d Dynamic IP

2 Which type of data-transmission media is most susceptible to electromagnetic interference?

a Fibre optic

3 What role do routers play in the process of packet switching?

a They prevent packet collision

b They direct packets along the most efficient paths to their destination

They combine packets into a single data stream

They generate the data packets from the user data

As can likely be inferred, dynamic routing contrasts

with static routing by using an algorithmic approach to

automatically adjust routes in the routing table. To do this,

routers communicate with each other to share information

about their connections, topology and demand on their

network resources. This information is used to adjust the

routes in runtime, with the goal of ensuring optimal paths

for network efficiency.

Dynamic routing scales well for larger networks, as they can

automatically adapt as changes occur. This also improves

fault tolerance, as network tratfic can be automatically re-

routed around a failed connection.

Dynamic routing does pose some challenges. Its dynamic

nature requires additional computational and bandwidth

resources to manage. The combinartion of the larger

networks and the dynamic routing do make for a more

complex routing table that needs to be configured and

maintained. This necessitates a deeper understanding of

network concepts by the staff maintaining such a nerwork.

Finally, given each router is maintaining its own copy of

a rouring table, there can be delays in the convergence of

the routing table while the individual routers communicate

and negotiate with each other. This can lead to occasional

routing inconsistencies in the short term.

A2 Networks

A2 .3 Data transmissions

Which type of routing is better suited for networks that require frequent updates due to

topology changes?

a Static routing

b Dynamic routing

¢ Both are equally suited

d Neither is suitable

Describe the main purpose of network address translation (NAT).

Describe one advantage and one disadvantage of using fibre-optic cables for

data transmission.

Explain why packet switching is considered efficient for data transmission over a network.

Explain one main advantage of static routing compared to dynamic routing.

Network security

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A2.4.1 Discuss the effectiveness of firewalls for protecting a network

» A2.4.2 Describe common network vulnerabilities (HL)

» A2.4.3 Describe common network countermeasures (HL)

» A2.4.4 Describe the process of encryption and digital certificates

A2.4.1 Firewalls

Firewalls obviously play a key role in helping protect computer networks, but what exactly do

they do?

.
PC1

192.168.1.10 Internet
Router LAN Router WAN 'y

interface interface

192.168.1.1 B XXAKXXKXXXK

Joi==ts
PC2 Router

192.168.1.11

Rule 1: Accept

From IP 192.168.1.11 in LAN

To IP 185 XXX XXX XXX, port 80 & port 443 in WAN
—

. Rule 2: Deny

PC3 From any host in LAN Web server

192.168.1.12 To any host in WAN 185.200C00CXXX

LAN network

192.168.1.0/24 Internet (WAN)

M Firewall in action

A firewall inspects the IP packets that pass through it, and filters the incoming and outgoing

traffic, based on a set of predefined security rules. In the illustration above, Rule 1 is allowing

traffic from PC2 on the internal LAN to access any external IP address that begins with

185.2.2.2 for destination ports 80 or 443. Rule 2 then denies all other internal requests. Each

individual packet is checked against the rules until a rule is encountered that allows or denies

passage through the firewall.

Some firewalls are also capable of applying stateful inspection, where the state of active

connections is monitored and can be used to determine passage through the firewall, for

instance once a connection has been allowed to be established, packets are allowed to continue

back and forth through the connection until it closes.

A2 Networks

The rules comprise a set of allow lists and deny lists. These lists are IP addresses or ranges of

1P addresses, and optionally can also specify application port numbers.

Using the rule lists, firewalls control access to the internal network from external sources, and

can also be used to control which external destinations are accessible from internal sources.

Addirtionally, firewalls log traffic requests, which can be useful for detecting and responding to

suspicious activity or for identifying a potential breach.

Firewalls are just one tool for securing a network, and are not perfect for protecting against

all types of attacks. For instance, firewalls are less effective against threats from within the

network such as a malicious insider, or if an external threat has gained local presence on

the network via compromised WiFi. Some threats can be quite sophisticated and can mimic

legitimate traffic. Finally, a firewall is only as good as its configuration. If a network manager

doesn't keep the deny lists updated and the firewall firmware up to date, then vulnerabilities

can be exposed.

(;Cummon mistake

Over-reliance on firewalls

Don't assume that a firewall alone is sufficient to protect a computer network. Firewalls are

gatekeepers for ranges of addresses and ports. Most firewalls do not inspect the content of the

data beyond the source and destination address and port, meaning malicious data can easily still

be let through if destined for a legitimate location.

B Network address translation

Host Server

Router + NAT

Private network

10001 150.150.0.1 200.100.10.1

Source IP Destination IP Source IP Destination IP

I | 10.0.0.1 | 200.100.10.1 ‘ ‘ ‘ ‘ 150.150.0.1 ‘ 200.100.10.1 | |

T x
v Changes according]

SRR to NAT S s
v |

Source IP Destination IP Source IP Destination IP

I | 200.100.10.1 | 10.0.0.1 ‘ ‘ l ‘ 200.100.10.1 l 150.150.0.1 I |

B Network address translation in action

You were previously introduced to the concept of network address translation in Section A2.3.1.

Beyond the convenience that network address translation has provided through allowing the

internet to continue to function despite having exhausted IPv4 addresses years ago, it has also

had an additional benefit with respect to network security.

Since NAT modifies the IP address information in packet headers, the process helps to hide

internal TP addresses on a network, which makes it more difficult for an external attacker

to reach internal systems. Although it is not technically a security feature by design, it does

provide an additional layer of difficulty that attackers must overcome, as the internal structure

of your network and IP addresses are not directly exposed. In this sense, it could be described

as a case of security by obscurity.

A2 .4 Network security

A
T
N
O
 T
H
 A2.4.2 Common network vulnerabilities (HL)

In this section, we briefly consider a range of common attack vectors and vulnerabilities within

computer networks. In the subsequent section, we review strategies to mitigate these risks.

: @ Linking question
* What are the similarities and differences between network security and database security? (A3)
.
P T T T s

s
s
s
a
s
s
s
n
a
s

B Distributed denial of service (DDoS)

Attacker computers

Malicious traffic

— — Internet

@
— —_—

— ‘ Out D-f resources

Clean traffic Service offline

Target server

Real users

A distributed denial of service (DDoS) attack is one in which multiple systems under the

control of the malicious actor generate a massive number of network requests, with the goal

of overwhelming the target system. This can cause the target to slow down, so that it becomes

unusable or unavailable for legitimate users.

It is important to point out that the computers being used for the attack are typically not even

devices directly owned or operated by the attacker. It is more likely that they are devices that

have fallen victim to having unwittingly installed malware on their system that the attacker

can then use to contribute towards the overall DDoS attack.

B Insecure network protocols
There are many older or poorly designed network protocols still in widespread use that do not

include modern security features. These older protocols allow attackers to intercept, or even

alter and manipulate, the content of darta in transit on the internet.

Examples of these older protocols are HTTP, FTP and Telnet, all of which transmit their data in

the clear without any form of encryption. The modern alternatives are HTTPS, SFTP and SSH.

B Malware
“Malware”, or “malicious software”, is the overarching term for a classic range of attacks that

have had various names applied to them over the years. If you've come across terms such as

“computer viruses”, “worms”, “trojan horses” and “ransomware”, these are all various forms

of malware. They are software that is designed to harm or exploit vulnerable devices and to

seck out and spread to other vulnerable devices. They can lead to data loss, data theft and loss

of full control of the device. Malware can sometimes sit idle for extended periods of time until

triggered to activate (such as in the case of a DDoS client).

A2 Networks

A2 .4 Network security

B Man-in-the-middle (MitM)

o [« |

MEs A
User Web application

New connection

Perpetrator

Man in the middle

A man-in-the-middle attack (now also sometimes referred to as an on-path attack) is where an

attacker eavesdrops on communications between two systems.

This can result in data breaches, or darta alteration, without the knowledge of the original

parties involved.

H Phishing
Phishing is when a victim receives, and responds to, a seemingly legitimate message (such as

an email) that has the aim of deceiving the victim into providing sensitive information, such

as login credentials or bank account details. This can result in unauthorized access to other

systems, identity theft and financial crimes.

M SQL injection

An SQL injection is where an attacker exploits vulnerabilities in the way an application or

website has been designed to work with its database. It relies upon the programmers not

applying sufficient validation checks to the user inputs, so that the application can make

unintended changes to the underlying database. This can result in unauthorized viewing

of user lists (and their passwords), deletion of data or granting administrative control of the

database to the attacker.

To understand how the SQL injection attack works, consider the impact the following Python

would have to the SQL statement if executed on a database:

| i ot it acisas . e et i o2 oo 3t i 4 = . i i St i e i Ll et e s it TR e-———n

: first name = "Robert'); DROP TABLE Students; --" :

: family name = "Doe" :

: sgl = "INSERT INTO Students VALUES ('" + first name + "', '" :

: + family name + "')"; :

e e T e e e e e e e . e e a

The SQL string now actually contains three different SQL commands:

1 INSERT INTO Students VALUES ('Robert');

2 DROP TABLE Students;

3 -', 'Doe');

ze =
o
=
-

A
T
N
O
 T
H
 Never trust inputs from users or feed them straight into your database without verifying and

validating them first!

B Cross site scripting (XSS)
Cross site scripting attacks operate on similar principles to the SQL injection attack. Instead of

using insufficient validation to send rogue database instructions, a cross site scripting attacker

injects their own code to run client-side on pages viewed by other users. This can bypass

access controls, deface websites or redirect users to malicious sites.

Any website that loads and executes JavaScript that is being hosted by a third party (a very

common practice for many JavaScript libraries) makes itself potentially vulnerable to this

scenario, as the website is effectively inviting the third party to run their own code on

the website.

B Unpatched software
Unpatched software refers to software that has not had all published security updates applied

to it. Once security updates are released by software vendors, it is particularly important to

apply them as soon as possible as not only do they help address and correct a vulnerability,

they also advertise the existence of the vulnerability, making devices lacking the update even

more vulnerable to artack.

B Weak authentication
Systems that have poorly designed authentication systems make themselves vulnerable to

attack by design. Examples of this might be websites that do not properly hash and salt their

passwords, or that store their security keys in insecure folders. Multifactor authentication

systems, and the use of tools such as OAuth, are industry standard for a reason.

Developers should be discouraged from rolling out their own authentication system

for anything other than as a learning tool. Use and rely on the excellent high-quality

authentication systems that have been built upon the tears of those who have gone before you.

B Zero-day exploits
A zero-day exploit is when an attacker takes advantage of a previously unknown weakness

in software or hardware, before its maintainers have had the opportunity to create a patch to

fix the vulnerability. These types of exploits are especially dangerous because, by their very

nature, there is no known defence against them.

Perhaps the best-known historical example of a zero-day exploit was Stuxnet. It was malware

that was used to break into Iran’s uranium-enrichment centrifuges in 2006, and is suspected to

have been created by the USA’s National Security Agency (NSA).

A2 Networks

A2 .4 Network security

A2.4.3 Common network countermeasures (HL)

(;Common mistake

Network security is more than having anti-malware software and using encryption

Many times, when students are asked how to protect a computer or data on a network, they

simply revert to saying “install anti-malware software” or “use encryption”. These are lazy

answers that do not capture the nuance of the approaches outlined in this section. Network

security requires a complex, multi-layered approach to protect against attacks. Be sure to

understand the different strategies outlined and be prepared to discuss them in assessmenits.

(;Top tip!

Match the threat to the countermeasure

One method of ensuring you master a more detailed understanding of the complexities of

securing a computer network is to review the various threats discussed in the previous section, and

match each to the appropriate countermeasure discussed in this section. For instance, multifactor

authentication can help counter weak authentication issues.

l Content security policies

The content security policy header is settings that can be placed into the HTTP header to

define which sources are permitted to load content on to a particular website. Properly set,

they can help guard against XSS attacks and similar injection exploits.

Tor more informarion, search online for Mozilla’s content-security-policy documentation

(https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy).

Bl Complex password policies
Password policies are continually a vexed and contentious issue.

Some in the industry continue to argue for password rules that enforce the creation of strong,

hard-to-brute-force passwords that require minimum lengths and a mix of letters, numbers

and special characters.

Others in the industry argue that best practice should be to help users cope with what is

described as “password overload”. Security experts such as Troy Hunt argue best practice

should entail:

B only using passwords where they are really needed

B using technical solutions to reduce the burden on users

m allowing users to securely record and store their passwords

B only asking users to change their passwords on suspicion of compromise

B allowing users to reset passwords easily, quickly and cheaply.

Tor more on modern understanding of password policies, search online for Troy Hunt’s

excellent article “Passwords Evolved: Authentication Guidance for the Modern Era”

(www.troyhunt.com/passwords-evolved-authentication-guidance-for-the-modern-era).

25 =
o
Z
=<

A
T
N
O
 T
H
 Major companies such as Microsoft and Google are now promoting the use of passwordless

authentication as much as possible. As Google states: “Developers and users both hate

passwords: they give a poor user experience, they add conversion triction, and they create

security liability for both users and developers.”

Passkeys are being promoted as a safer and easier alternative. This can take one of a variety of

forms, including:

B biometric sensor login (fingerprint or face recognition)

m PIN

B pattern.

Read more about passkeys by searching online for Google Developer’s “Passwordless login

with passkeys” (https://developers.google.com/identity/passkeys).

If you do use a website that still requires a password, be concerned if it imposes a maximum

length on the password you set. If a password is properly hashed, it won't matter how long

itis, so if you are told by a system that the password has a maximum length, chances are it

means they are storing it in unhashed clear text! Run, run far away, and definitely do not

reuse a “real” password on that service! (The author has been known to use variations of

“thisPasswordIsNotSecure” on such websites @)

B Distributed denial of service (DDoS) mitigation tools
To help guard a server against a DDoS attack, most firewalls and web servers have settings

available that help absorb or deflect traffic overloads. They do this by rate limiting (allowing

a maximum number of requests in a given time-period from any individual source), traffic

analysis and also subscribing to cloud-based DDoS protection services, such as those provided

by the major cloud-hosting companies.

B Email filtering solutions
One of the most common attack vectors used for the spread of malicious software remains

email. To this end, having modern and up-to-date email-filtering systems to scan incoming

emails for malicious attachments, phishing attempts and general marketing spam can go a long

way to protect end-users from email-based threats.

B Encrypted protocols
To protect against man-in-the-middle and other similar attacks is trivially easy now. Simply

do not use unencrypted protocols such as HTTP, FTP or Telnet. Only use systems that

accommodate the secure, encrypted modern versions of HTTPS, SFTP or SSH.

B Input validation
A maxim in Computer Science is never to trust user inputs: always validate them!

Use a range of input-validation tools, such as presence check, length check, type check and

format check to validate that the structure of the incoming data is in the style and format

expected. For instance, your software shouldn’t be accepting kilobytes of data when the entry

box is for a person’s name or date of birth!

A few simple checks on the input data being received from the user, prior to accepting and

processing it, goes a long way to protecting systems from harmful data.

An example of where lack of input validation caused global security concerns was the

Heartbleed vulnerability that was hidden within the important OpenSSL cryptography library,

which is a widely used implementation of the transport layer security protocol.

A2 Networks

For a simplified look at how the artack worked, search online for “*1354: Heartbleed

Explanation” (www.explainxkcd.com/wiki/index.php/1354:_Heartbleed_Explanation).

B Intrusion detection systems (IDS) and intrusion

prevention systems (IPS)
Intrusion detection and prevention systems are specialized software tools that actively monitor

network traffic and the broader state of your system. Their goal is not just to detect potential

threats, but proactively to block them before they succeed in compromising your systems.

The intrusion detection system focuses on monitoring network and system traffic to spot

suspicious activities and potential threats. It sends alerts to network administrators when it

identities such activity. The IDS is a passive system, meaning that it does not interfere with the

flow of traffic on the system.

The intrusion prevention system is an active system. When it detects a threat, it takes proactive

measures to prevent the threat from gaining access to, or harming, the network. It can block

traffic, drop malicious packets, close connections and more.

In modern cybersecurity solutions, the IDS and IPS roles are often bundled together into a

comprehensive security product, allowing for both detection of threats and active measures

to prevent those threats from causing harm. These modern tools have taken on the name

of “endpoint protection” to describe their role. Endpoint-protection software typically also

bundles other security functions, such as antivirus, anti-malware, firewalls and others, with

the goal of integration being to provide a robust protection regime.

Most operating systems come with their own basic endpoint-protection utilities installed

(in Windows it is known as Defender), but there are many commercial operators in this

space. CrowdStrike is one such operator, which became famous for all the wrong reasons

when, on 19 July 2024, it sent out a faulty update for its Falcon Sensor product that resulted

in over 8 million Windows computers getting stuck at the infamous Blue Screen of Death

(BSOD), affecting critical systems for airlines, banks, hospitals, supermarkets and many other

organizations around the globe.

B Multifactor authentication (MFA)

Multifactor authentication systems are an easy-to-

» implement measure that require more than one method of

) authentication by users to verify their identity.

The commonly stated goal of introducing multiple factors

y is to require two of the three means by which a user can

. prove their identiry:

m Something they know (e.g. a password).

®m Something they have (e.g. their phone — by way of

M One-time passcode

A2 .4 Network security

| receiving or generating a code).

m Something they are (e.g. a biometric, such as fingerprint

or facial recognition).

As a consumer, you should enable two-factor

authentication on as many services as possible and use an

app such as Authy.

A
I
N
O
 T
H
 (;Top tip!

Adding one-time codes to your projects

As a beginner software developer, there are libraries available that make it very easy to incorporate

one-time codes that are compatible with all the major authentication apps. For Python, search

online for the PyOPT library (https://github.com/pyauth/pyotp).

B Secure socket layer (SSL) certificate and transport layer security
(TLS) certificate

SSL and TLS certificates allow consumers to authenticate the developer or organization that

authored a software product. Developers and companies can use these certificates to digitally

sign the project as their work, thereby giving trust and confidence to the consumer. These

digital certificates are discussed in more detail in Section A2.4.4.

B Update software
Keeping your software up to date by regularly applying all the latest security patches is an

important step for mitigating the risk of falling victim to a security vulnerability.

B Virtual private networks (VPN)
As previously discussed, VPNs provide a secure means to exchange data with a remorte office

as if your device was connected directly to the private network. Companies regularly require

their employees to make use of VPN technologies whenever they are working remotely away

from the office.

Bl Testing and training
Regular testing of your security measures, including “white hat” penetration testing and

vulnerability assessments, forms a critical part of ensuring systems remain secure. Testing

helps ensure your systems still work as you expect, and that no new weaknesses have emerged.

As part of the testing, there should also be regular training for staff within an organization.

Many security breaches occur through human error, so training employees in security best

practices on an ongoing basis is also a crucial part of any security regime.

B Wireless security measures
Wireless networks pose a unique vulnerability to any computer network and require special

security measures to identity and mitigate risks. One commonly used measure is to restrict

access to the network to each device’s unique media access control (MAC) address. The MAC

address is a unique 48-bit address assigned to each network card by the manufacturer, so these

can be used to populate an allow-list of devices permitted to connect to the network.

B Secured backups
When was the last time you backed up your files?! For data that matters to you, take

responsibility for its care and protection. Don't just rely on cloud services either, as they are

known to fail occasionally. Purchase a spare portable drive to keep in the back of your sock

drawer, and copy your data to it at least once a month.

A2 Networks

(;Top tip!

Data synchronization tool

ket =
o
=
=< For students confident with using console commands, rsync is the best tool for copying files for

backups. Search online for “manpagez: man pages & more man rsync(1)” for the documentation

(www.manpagez.com/man/1/rsync).

If you are less confident with the console, search online for “Free File Sync”, a free, open-source file

synchronization toal (https://freefilesync.org).

Tinally, if your backups resemble a collection of portable drives, you should consider the

security of your backups! An attacker doesn't need to penetrate your network if they can just

pinch a USB drive!

(;Top tip!

File-encryption tool

e

@ Linking
qUEStiOfl Consider encrypting your backups with a tool such as gnupg (https://gnupg.org/download): just

don't forget the password!

B To encrypt:

gpg --output encrypted _ backup.enc --symmetric --cipher-algo AES256

Do networks and

databases use

the same form

of encryption

algorithms? (A3)
sasessssssassssnasannns

mybackup.zip

B To decrypt:

gpg --output mybackup.zip --decrypt encrypted _ backup.enc

Encryption:

the conversion of

momaionoraaino | A2.4.4 The process of encryption
amamematcalysere | and digital certificates format that cannot be

easily understood by

unauthorized people. (.Common mistake

Thinking digital signatures and digital certificates are the same thing

Ensure you understand the nuance of the distinction between a digital signature and a digital

certificate. They are not the same thing.

Bl Symmetric encryption

Secret key

1

1
1

1

[
1

1

I
[

i
I
|
|
I
I
i
I
|

¥ ¥

Encryption Decryption

Plaintext Encrypted Plaintext

document document document

A2 .4 Network security

Encryption key: a

string of characters or

numbers used by an

encryption algorithm

to encode or decode

data. It is the values

that are input into

the mathematical

functions responsible

for scrambling or

descrambling the data.

Symmetric encryption is where the same key is used for both encrypting and decrypting

the data. This means the key must be shared between both the sender and receiver in a

secure manner.

Symmetric encryption is generally faster and less computationally intensive than its

asymmetric equivalent, so it makes sense to use it for encrypting large files.

When physical distance separates the sender and receiver, it can be difticult to share the

encryption key in such a manner as to be protected against eavesdroppers. There are two

common solutions to this problem:

B Use asymmetric encryption to establish secure communications. Use this asymmetric

method to exchange and agree on a symmetric key, and then switch communications to the

faster, more efficient symmetric approach.

B Use a mathematically secure method to exchange keys, such as Diffie Hellman (covered

later in this section).

Bl Asymmetric encryption

Different
Public key key Private key

I 1 1 —1 1

s 83 a*312%$FR SRS
G&**+mnb

— » | >4357DCal —— >
nc ion ed on
2l m<kep&v$a e

g”nf)fwli]gt

Original text Encrypted data Original text

Asymmetric encryption is when the security key used to encrypt data is different from the key

used to decrypt it. If it can work successfully, there are significant benefits to be gained, as it

means two parties wanting to communicate in encrypted form do not have to meet privately to

exchange an agreed-upon encryption key, as is required for symmetric encryption. Instead, the

encryption key can be published publicly, and any person wishing to send a message can use it

to encrypt the data, so that only the recipient and key-holder can decrypt it to read.

For example: If Alice wants to send a secure message to Bob, she encrypts it using Bob's public

key. Only Bob can decrypt this message with his private key.

How does it work? How is it algorithmically possible to use one cipher key to encode the data

and a different key to decode it? The answer is mathematics! The following walkthrough,

inspired by an example by Henry J. Schmale, is simplified and loosely based on the RSA

(Rivest—Shamir—Adleman) encryption algorithm.

(; Key information

The mathematical walkthrough is provided to demonstrate how such algorithms are possible, as an

exerdse of intellectual interest. Understanding the mathematics is beyond the scope of the syllabus.

You will not be examined on this procedure or asked to do these calculations in the exams.

A2 Networks

A2 .4 Network security

Step 1: Generate your public and private key

Start by selecting two prime numbers. These are generally very large: up to 2048 bits is typical.

We will use 61 and 53 for our walkthrough.

p=06l

q=53

Tind n, the product of the two primes, and A(n) (known as “Carmichael’s totient function”).

To follow the maths, all you need to appreciate is that it is the least common multiple of

(p-D(q-D.

n=pq=61x53=3233
and

Aln) = lem[(p - D(g — DI = lem(60,52) = 780

Select an integer, e, that is a prime number, less than A(n), and not a factor of A(n). A common

choice is 2' + 1, being 65537.

e=17

Solve d, where (d x €) mod A(n) = 1. This is known as the “modular multiplicative inverse”.

That is, (17 d) mod (780) = 1. One valid answer in this case is d = 413.

The public key will be the two numbers n = 3233, ¢ = 17, and the private key will be the two

numbers n = 3233, d = 413.

Step 2: Encrypt your secret message

The cipher text, c, for a secret message, m, is given by the following equation:

c(m) = m*mod n

So, if the secret message is A, which is ASCII 65:

c(65) = 65'"mod 3233 = 2790

Step 3: Decrypt your secret message

The message, m, for cipher text ¢ is given by the following equation:

m(c) = c*mod n

So, when given cipher text 2790, this would be decrypted as follows:

m(2790) = 2790*" mod 3233 = 65"

The security of the algorithm rests in the size of the prime numbers and that factorizing a

number into its two constituent primes is still not possible except by brute force of trying

every possible set of values. The original prime number factors are required to be able to

calculate A(n). In this case, it would be trivial to tind the factors of 3233, but finding the factors

of a 4096-bit number would take hundreds or thousands of years.

One area of active computing research that may threaten the security of RSA-encrypted

data is quantum computing. Shor’s algorithm, specifically, is a quantum algorithm

for the factorization of integers that could work very quickly and render modern

cryptography obsolete.

M Role of digital certificates
Digital certificates are used as a way of certifying identity on the internet. For HTTPS traffic,

they are issued by a murually trusted third party known as a “certificate authority (CA)".

When a digital certificate is presented in a network transaction, it helps the recipient verify

that the public key belongs to the sender and not an imposter. Digital certificates form a key

part of the network of trust on the internet. It’s not enough to know that your communication

Data

Hash

function

‘. Certificate
.

with yourbank . com is encrypted, if any ol’ person can pose as the legitimate web server for

yourbank . com. You want to know the web server you are logging in to is the one you want

to share your secrets with.

Obtaining a certificate

The process starts by yourbank . com requesting that a certificate authority (that is mutually

trusted by both parties) issues a certificate that can be used to prove they are, indeed, the

legitimate server for yourbank . com. The bank will generate a public and private key using a

process similar to that previously discussed with the RSA algorithm. The private key is kept

secure on the bank’s server, while the public key is sent to the certificate authority with the

request for certification.

Using the public key provided in the certification request, the CA will verity the identity and

legitimacy of the bank. This process varies, and is dependent on the process applied by the

certificate authority. In the early days of the internet, it required sending photo 1D proof, business

ownership certificates and other legal documents to the CA. Modern practice has simplified this

significantly to encourage broader adoption of HTTPS, so now certificate authorities such as

letsencrypt.org offer the service for free and without complex paperwork.

Once the CA is sartisfied with the verification, it will use its private key to sign the public key

of the bank or other website. This signing process involves creating a hash of the certificate

that is then encrypted using the CA’s private key. This encrypted hash becomes the electronic

signature. It can't be produced without the CA’s private key, but it can be validated through

using the CA’s public key.

Using digital certificates

Signing Verification

101100110101 k

Hash

Encrypt hash .

using signer’s P

private key
Digitally signed data \

— E 111101101110

6 111101101110 ——
Signature

““““ Decrypt using

Attach to Data signer’s public

data Hash key
function o-lt

?
101100110101 101100110101

Hash Hash

Digitally signed data If the hashes are equal, the signature is valid.

M Signing with a digital certificate

Once issued, the digital certificate can be attached to all communications from the bank or

other organization, and used to cryptographically sign the communication. This provides a

mechanism of allowing recipients to algorithmically verify the authenticity of the origin of

the communication.

A2 Networks

Digital certificates can also be selt-generated to create public and private keys that can be used

for secure login to network services, such as via SSH (Secure Shell). In this case, your public

key is uploaded to the remote machine you want to authenticate yourself to later and you

keep the private key secure on your own local machine. The private key is equivalent to your

password. When you want to log in via SSH, the server will generate a challenge to you that

is encrypted with the public key. You, as the sole person in possession of the private key, are

therefore the only person able to decrypt the challenge and thereby prove your identity.

Given the crucial importance of cryptographic keys in the modern interconnected economy,

proper storage of keys is essential. If anyone gains unauthorized access to an organization’s

private keys, they can act as an imposter of that organization in all electronic transactions

for which that key has been set up to be used. The crearion, distriburion, usage, storage and

eventual retirement and deletion of encryption keys is therefore a key task of any effective

1T infrastructure.

Digital certificates are a core part of blockchain technologies such as cryptocurrencies. All

transactions on a blockchain are both signed and hashed. Senders use their private keys to

digitally sign transactions as part of the process of validating themselves as the owner of the

cryptocoin that they are spending. This signature serves to authenticate the identity of the

sender and ensure the non-repudiation of the transaction. The sender cannot later deny having

made the transaction.

Thinking skills: Spot the forgery at Coding Quest in the 2022 challenge

(https://codingquest.io/problem/5).

Alice Bob H Diffie Hellman key exchange
) Given that asymmetric encryption algorithms require significantly

Common paint more processing than symmetric algorithms, it is ideal if lengthy

COmMmUIIcation Sessions can occur using symmetric encryption.

The obvious problem that occurs then is to find a secure method of

Secret colours exchanging and agreeing on the symmetric key. While asymmetric

encryption could be used to do this, it is slower and more processing i R
l

0
4
0

e = —| intensive. An alternative approach that is commonly used is known as

the “Diffie Hellman key exchange™.

Public transport The analogy used to describe Diffie Hellman is the difficulty of

unmixing colours of paint. While we may have a vague idea of which

(assume that colours might be used to constitute brown, it is almost impossible to
5 mixture separation 3 ; i = = unmix the input colours perfectly.

is expensive)

From an algorithmic perspective, Ditfie Hellman relies on the same

principles of asymmetric encryption with respect to prime numbers

and the mathematical difficulty of determining the prime factors of a
Secret colours

“
.
+

“
.
+

number once run through a modulus operation.

Common secret

A2 .4 Network security

(®Key
information

Video walkthrough

Search for the

YouTube video

"Diffie-Hellman Key

Exchange: How to

Share a Secret” by

Spanning Tree.

This is a mathematical walkthrough of the Diffie Hellman algorithm:

Step 1

Agree (in public) on a base and a modulus. The modulus must be a prime number.

Person 1 Person 2

base = 109, modulus = 811 base = 109, modulus = 811

Step 2

Pick a secret number as your exponent. Calculate the base, raised it to the secret, and then put

it through the modulus.

secret = 197 secret =312

10979, 811 = 679 10929 811 = 337

Step 3

Exchange the result of step 2 with your friend.

received = 337 received = 679

Step 4

Calculate your common secret by taking the received number, raising it to your original secret

and then running the result through the modulus.

3377% 811 = 215 679*2% 811 = 215

1 What is a primary function of a firewall in a network security context?

a Monitoring network performance

b Inspecting and filtering traffic based on set rules

¢ Increasing the speed of network traffic

d Providing physical security to network devices

2 Which attack involves overwhelming a service with excessive requests in order to make

it unavailable?

a Phishing

b 5QL injection

¢ DDoS

d MitM

3 What type of attack intercepts and possibly alters the communication between two

parties who believe they are directly communicating with each other?

a DDoS

b MitM

¢ Phishing

d XS5

4 Which vulnerability arises when software has not been updated to address known

security issues?

a Insecure network protocols

b Unpatched software

¢ Weak authentication

d Malware

A2 Networks

A2 .4 Network security

10

1

12

13

14

15

Which network countermeasure is specifically designed to prevent unauthorized access

by verifying users through multiple methods?

a Multifactor authentication (MFA)

b Intrusion detection system (IDS)

¢ Virtual private network (VPN)

d Email filtering

Which countermeasure can help protect a network against interception and unauthorized

access to data in transit?

a Multifactor authentication (MFA)

b Intrusion prevention system (IPS)

¢ Transport layer security (TLS) certificate

d Virtual private networs (VPN)

Which security practice involves verifying the legitimacy of a website's connection to

ensure it is secure?

a Applying content security policies

b Updating software reqularly

¢ Using secure socket layer (SSL) certificates

d Email filtering

Which type of cryptography uses the same key for encryption and decryption?

a Symmetric

b Asymmetric

¢ Both AandB

d Neither A nor B

Describe how network address translation (NAT) contributes to enhancing network security.

Describe what is meant by “zero-day exploit”.

Describe SQL injection and how it can affect a database-driven website.

Describe how weak authentication can pose a risk to network security.

Describe the purpose of using intrusion detection systems (IDS) and how they function.

Describe how DDoS mitigation tools work to protect a network.

Describe the role of digital certificates in establishing secure network connections.

Thinking skills: Design a network with Raspberry Pi

Remote network

with internet

access

— =

Raspberry Pi
=——— -1 —mmn =

y web server .
Raspberry Pi Raspberry Pi

proxy server router and firewall

Raspberry P Em——
wireless access -

. Switch
point
— - F——— I

Raspberry Pi

DHCP server

Laptop Laptop Laptop

M Raspberry Pi network structure

Create a small network using Raspberry Pi to simulate real-world network scenarios, including client-server and

peer-to-peer architectures, routing and basic network security implementations.

If you are completing this task as a class, split into small groups, allocating one Raspberry Pi per group. Assign each

Raspberry Pi one of the following roles:

Firewall and router

Proxy server

Web server

DHCP server

Wireless access point server

DNS server (optional)

The following instructions suggest utility programs and configuration files that would be useful for achieving your

objectives but lack sufficient particularity to complete the instruction without further research by your team. The

information provided is mostly to help you know you are on the right track when searching for guides online.

Materials needed:

Several Raspberry Pi computers (at least one per group; ideally three or four per group for diverse roles)

SD cards with Raspberry Pi OS installed

Ethernet cables

Network switch (or a router with multiple Ethernet ports)

Monitors, keyboards and mice for interfacing with the Raspberry Pi computers

B Internet connection (for downloading packages and updates)

Initial set-up for all Raspberry Pi computers:

B Each Raspberry Pi needs the Raspberry Pi OS installed and updated. You can download the latest version from

the official Raspberry Pi website and write it to an SD card. Connect the Raspberry Pi to a keyboard, monitor

and mouse and power up. The default login credentials are username pi and password raspberry. When

configuring the Raspberry Pi computers, enable SsH and vNC to ease remote access later.

B You may need occasionally to temporarily connect the Raspberry Pi computers directly to an internet

connection, rather than to your custom network, for the purposes of installing updates and other programs.

A2 Networks

For the Raspberry Pi designated as router and firewall:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi

computers can find it to request internet traffic), so the DHCP server will need the MAC address of this Pi so as

to assign it the same IP address each time. To view the IP address from the console, use the command ip a.

2 To set a static IP directly (without the DHCP server), edit the file /etc/dhcpcd.conf as follows:

interface etho

static ip address=192.168.1.1/24

static routers=192.168.1.254

static domain name _servers=192.168.1.254

w

Enable IP forwarding by editing /etc/sysctl.conf.

4 Set up the WiFi connection to your school WiFi network (or other network providing outbound internet access)

by running sudo raspi-config.

5 Configure NAT and the firewall with nftables. The main configuration file will be /etc/nftables.conf. A basic

template configuration may resemble:

table inet filter ({

chain input {

Accept any localhost traffic

iif lo accept

Enable HTTP and HTTES

tcp dport { http, https } accept

Drop everything else

counter drop

type filter hook input priority 0;

ct state established,related accept

Accept traffic already established

6 To apply change to rules, run this command: sudo nft -f /etc/nftables.conf.

7 Reboot the Pi for settings to take effect, and then test.

For the Raspberry Pi designated as wireless access point:

1 Install hostapd as your access point host software.

2 The main configuration file will be /etc/hostapd/hostapd.cont. Suggested settings include:

interface=wlan0

bridge=bro0

driver=nlg80211

ssid=PiNet

hw mede=g

channel=7

wmm _ enabled=0

macaddr acl=0

auth algs=1

ignore Dbroadcast ssid=0

wpa=2

wpa _ passphrase=YourPasswordHere

wpa key mgmt=WPA-PSK

wpa _ pairwise=TKIP

rsn _ pairwise=CCMP

A2 .4 Network security

3 Configure hostapd to use that configuration file by editing /etc/default/hostapd.

4 Prevent the wireless network card from being managed by the default network manager by changing /etc/

dheped.conf and specifying denyinterfaces wlano.

For the Raspberry Pi designated as DHCP server:

1 Install isc-dhcp-server as a DHCP server.

2 The main configuration files will be /etc/dhcp/dhcpd.conf and /etc/default/isc-dhep-server.

3 Anexample template for /etc/dhcp/dhcpd.conf is:

subnet 192.168.1.0 netmask 255.255.255.0 {

range 192.168.1.10 192.168.1.100;

option domain-name-servers 192.168.1.1;

option routers 192.168.1.1;

default-lease-time 600;

max-lease-time 7200;

4 Ensure the DHCP server is configured to start on boot.

5 Check the logs for errors by using cat /var/log/syslog | grep dhcp.

For the Raspberry Pi designated as web server:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi

computers can find it to request a webpage), so the DHCP server will need the MAC address of this Pi so as to

assign it the same IP address each time. To view the IP address from the console, use the command ip a.

Install nginx as the web server software, and set it to start automatically on boot.

Create a web page at /var/www/html.

The main configuration files for nginx can be found in /etc/nginx.

If nginx fails to start, you can check for configuration errors by using sudo nginx -t.

An example HTML file for /va/www/html/index.html might resemble: o
O
w
n

s

W
w
N

<!DOCTYPE html=>

<html lang="en">

<head>

<meta charset="UTF-8">

<titlesWelcome to Pi Web Serverc</titles

</head>

<body>

<hl>Hello, Raspberry Pi Network!sz/hl=>

<p>This is a simple web page served from the Raspberry Pi web server.</p>

</body>

</html>

For the Raspberry Pi designated as proxy server:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi

computers can find it to request a webpage), so the DHCP server will need the MAC address of this Pi so as to

assign it the same IP address each time. To view the IP address from the console, use the command ip a.

2 Install squid proxy server software, and set it to start automatically on boot.

3 The main configuration file is at /etc/squid/squid.conf.

A2 Networks

4 In addition to acting as a web cache, because all traffic passes through a proxy it can also be used as a content

filter, for example you could block requests for given URLs. This is similar, though functionally different, from

the firewall approach. Investigate how to use squid to block certain websites.

For the Raspberry Pi designated as DNS server:

1 Ensure the Raspberry Pi is obtaining an IP address from the DHCP server. This Pi will need a static IP (so other Pi

computers can find it to request a webpage), so the DHCP server will need the MAC address of this Pi so as to

assign it the same IP address each time. To view the IP address from the console, use the command ip a.

2 When the configuration for the DNS server is complete, the DHCP server will need updating so clients know to

look to this computer for DNS resolution queries.

3 Install bind9 as your DNS server software, and ensure that it is set to start on boot.

4 The main configuration files will be in the folder /etc/bind.

5 To check the configuration for errors, go to sudo named-checkconf and sudo named-checkzone myhome.

local /etc/bind/zones/db.myhome.local.

6 An example ZONE file /etc/bind/db.myhome.local to create your own DNS domain (that would work on your

internal network) might resemble:

STTL 604800

@ IN SOA nsl.myhome.local. admin.myhome.local. (

3 ; Serial

604800 ; Refresh

86400 ; Retry

2419200 ; Expire

604800) ; Negative Cache TTL

@ IN NS nsl.myhome.local.

nsl IN A 152.168.1.1

@ IN A 192.168.1.1

WWW IN A 192.168.1.2

ATL alignment links

Research skills:

B Finding and selecting appropriate software and hardware resources.

B Understanding documentation to configure each Raspberry Pi for its specific role.

B Comparing solutions and different methods or options to determine what will work best for project requirements.

Thinking skills:

B Problem-solving the numerous challenges that come in setting up a new network, such as IP address conflicts,

firewall rules and ensuring all devices can communicate effectively.

m Critical thinking to evaluate the effectiveness of each network component and troubleshoot issues.

m Decision-making the design of the network.

Social skills:

m Collaboration by working together in a group to divide tasks, share findings and support each other.

B Conflict resolution of different opinions on how to configure the network or solve problems.

B Responsibility-sharing and relying on the contributions of others.

Communication skills:

B Technical writing to document the network set-up and configuration steps.

B Oral communication to explain complex concepts such as DNS or DHCP with peers or teachers.

Self-management skills:

B Planning and organization to manage a large, cumulative task.

B Adaptability to deal with unexpected issues.

B Self-motivation and initiative to go beyond a basic set-up, such as implementing additional network services or

security measures.

A2 .4 Network security

1 Small business network set-up

A small business has recently expanded and needs to update its network infrastructure to

support more employees and provide secure, efficient access to resources.

a |dentify one piece of network hardware that would connect multiple computers

within the office to create a local area network (LAN). 1]

b The business has chosen a star topology for its network. Describe one advantage of

using a star topology in a small business environment. [2]

¢ The company uses both HTTP and HTTPS protocols on its internal websites.

Describe one key difference between HTTP and HTTPS. 2]

d In the context of the TCP/IP model, describe the function of the transport layer. [3]

e The network architecture includes both client-server and peer-to-peer set-ups.

Compare these two types of network architecture in terms of resource management. [3]

f The business plans to use IPv6. Identify one advantage of using IPv6 over IPv4 in a

growing business. [1]

g The business is choosing between using fibre-optic cables and wireless transmission

for connecting different departments. Discuss two factors that should be considered. [2]

h Describe how routers in the network use dynamic routing to manage data traffic. [3]

i The company is concerned about network security. Describe one common network

vulnerability and a corresponding countermeasure. [3]

j Data encryption is crucial for the company's operations. Describe the difference

between symmetric and asymmetric encryption in the context of data security. [3]

k Outline how digital certificates contribute to network security. [2]

2 University campus network

A large university campus network needs to support thousands of users in a dynamic,

high-demand environment.

a State one network device essential for connecting campus buildings spread over a

wide area. [1]

b The university uses a hybrid network topology. Describe one benefit of using a hybrid

topology in a university setting. [2]

¢ DNS servers are critical in a university network. Describe the role of DNS in network

aperations. 2]

d Describe how the internet layer of the TCP/IP model facilitates connectivity between

different buildings on campus. [3]

e The campus uses both IPv4 and IPv6 addressing. Outline these two types of IP

addressing in terms of address availability. [2]

f Evaluate the use of twisted-pair cables vs fibre-optic cables for data transmission

within academic buildings. Consider factors such as cost and speed. [3]

g Explain how packet switching enables efficient data-traffic management on a busy

university network. [3]

h Describe one network security measure that should be implemented to protect

students’ grades and other sensitive data from alteration by the students themselves,

while still allowing them access to the campus network. [2]

i The university employs digital signatures for document verification. Describe how

digital signatures enhance security. [3]

j Outline the use of certificate authorities in the university’s network-security framework. [2]

A2 Networks

A2 .4 Network security

3 Airline network infrastructure

An airline operates a comprehensive network infrastructure to manage its public-facing

website for customer bookings, co-ordinate hundreds of staff across multiple locations and

handle customer interactions through self-check-in kiosks.

a i Identify one network device that is essential for connecting the airline’s global

offices to its central database. [1]

ii Outline one key network-security technique that should be used. (2]

b The airline’s network uses a mesh topology for critical systems. Qutline one advantage

of using a mesh topology for such applications. 2]

¢ HTTPS is mandated for the airline’s booking website. Describe the role of SSL/TLS

in HTTPS. (2]

d Describe the role of the application layer in the TCP/IP model, particularly in processing

online bookings. 3]

e The network includes a mix of wired and wireless technologies. Compare these two

technologies in terms of reliability and security, specifically for use in high-traffic

customer areas such as airports. 3]

f Describe the importance of using IPv6 for the airline’s network, focusing on its ability

to handle numerous devices and security features. [1]

g Describe how network routers ensure data packets find the optimal path across

complex networks. 3]

h Data security is a major concern for the airline, especially with customer data. Describe

one potential network threat and a preventative measure that can be implemented. 3]

i The airline uses VLANs to segment network traffic. Explain how VLANs enhance

network security and efficiency. [3]

i Outline the significance of using a reverse proxy in managing the high traffic on the

airline’s booking website. 2]

k Describe the role of firewalls in protecting the network infrastructure of the airline,

especially in scenarios involving customer data and payment transactions. 2]

A3 Databases

Database fundamentals

Database: an

organized collection

of structured

information or data

that can be accessed in

different ways.

Table: a structure

of rows and columns

for storing a group of

similar data.

Entity: a living or

non-living thing that can

have data stored about

it that can be described,

e.g. a person, a chair or

an aeroplane.

4 Tuple: one instance

of an entity; a row in

a table.

4 Record: one instance

of an entity; a row in

a table.

Attribute: a data

item or a characteristic

of an entity; a column in

a table.

What are the principles, structures and operations
that form the basis of database systems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A3.1.1 Explain the features, benefits and limitations of a relational database

A3.1.1 Relational databases

B Features
A database refers to an organized collection of structured information or data that can be

accessed in different ways. Typically, a database is stored electronically for fast retrieval

and manipulation of data. There are different types of databases, but your focus will be on

relational databases.

Relational databases have been predominantly used since 1980. Data in a relational database is

organized as a set of tables made of columns and rows.

Tables
The table is used to describe entities. An entity refers to a living or non-living thing that can

have data stored about it that can be described, such as a person, a chair or an aeroplane.

Each row, also called a tuple, will include a record or an instance of an entity, for example a

specific person, a specific chair or a specific aeroplane. Each column, also called a “field” or an

attribute, will include a data item or a characteristic of an entity, such as the age or the name

of a person, the colour of a chair, the model of an aeroplane, and so on.

Consider the following example:

AEROPLANE

Model Manufacturer PhysicalClassEngine NoOfEngines

Rockwell Commander 112 Rockwell Piston 1

Airbus A319 Neo Airbus Jet 2

Boeing 747-100 Boeing Jet 4

Boeing 777-8 Boeing Jet 2

Airbus A400M Atlas Airbus Turboprop 4

Boeing 747-100 Boeing Jet 4

In the example above, the table name is AEROPLANE (this is the entity) and there are six

records or tuples (rows in the table, excluding the table heading) and four attributes or

fields (columns).

A3 Databases

Primary key: a field

that uniquely identifies a

record in a table.

Foreign key: an

attribute in a table that

refers to the primary key

in another table.

A3.1 Database fundamentals

Primary key

1f you are to uniquely identify a record in this table, you should add an extra field. This is

required, as all the given fields have repeating values, so they cannot be used to identify a

record. It is possible for a company to have two aeroplanes of the same type, manufactured by

the same company, with the same type of engine, and so on.

Therefore, by adding an extra field to uniquely identify each record, the table will look

like this:

AEROPLANE

PlanelD | Model Manufacturer PhysicalClassEngine NoOfEngines

AO1 Rockwell Commander 112 Rockwell Piston 1

A02 Airbus A319 Neo Airbus Jet 2

AO3 Boeing 747-100 Boeing Jet 4

A04 Boeing 777-8 Boeing Jet 2

A05 Airbus A400M Atlas Airbus Turboprop 4

A06 Boeing 747-100 Boeing Jet 4

The PlanelD field is unique for each record (it has no duplicates) and this is called a primary key.

Foreign key

Consider that you want to record data about specific flights at an airport. The AEROPLANE

table only provides information about the planes. Therefore, you will need to create a new table

to register the flight details.

FLIGHTS

FlightID Departure Destination | PlanelD FlightDate | DeptTime | ArrivalTime

LG83903 LUX QTP AO3 01/07/25 17:00 20:20

0s864 CAl VIE AD4 15/01/25 16:45 19:20

GB961 LHR ZRH A03 25/02/25 8:40 11:35

In this table, the F1ightID acts as a primary key.

The two tables, FLIGHTS and AEROPLANE, are building a relationship, as the P1aneID from

the AEROPLANE table is used in the FLIGHTS table to identify the type of plane being used

for a specific flight. However, the P1laneID is no longer a primary key in the FLIGHTS table,

as it has repeating values; here it acts as a foreign key.

A foreign key is an attribute or a set of attributes in one table that refers to the primary key in

another table.

Composite key

1f you are to introduce a third table to register pilots on the flight, it might look like this:

PILOTFLIGHT

FlightID PilotID

LG8903 P500

05864 P104

GBI6T P500

4 Composite key: a set

of attributes that form a

primary key.

4 Relationship: a

relation established

between different

tables, where the

foreign key in one table

refers to the primary key

in another table.

The Flight ID links to the FLIGHTS table and the Pi1otID links to the PILOTS table

(supposing there is a PILOTS table as well that records pilots’ details). In the PILOTFLIGHT

table, there is no primary key. A solution could be to use a composite key, formed from the

two attributes FlightID and PilotID.

A composite key is a set of attributes that forms a primary key to provide a unique identifier

for a table.

B Relationships
A relationship is created when there is a logical association between two or more database

tables, in which one table contains one or more foreign keys that reference the primary keys

of the other tables. They enable relational databases to divide and store data in separate tables,

while connecting their data items.

To ensure data is always accurate, accessible and consistent, relational databases follow certain

integrity rules. For example, the referential integrity rule prevents users or applications from

entering inconsistent data. It is a constraint that ensures that no table will contain values

of a foreign key that are not matched to the corresponding primary key. In other words, it

makes sure that a foreign key always refers to a record that exists in another table. By applying

referential integrity constraints, the data stays consistent throughout operations such as

insertion, deletion and modification of tuples.

There are several types of relationships:

B one-to-one (1:1)

B one-to-many (1:m)

B many-to-one (m:1)

B many-to-many (m:m).

One-to-one relationships

When there is a one-to-one relationship between two tables, that means that one record in a

table is associated with exactly one record in another table: the primary key corresponds to

one or no data in another table. For example, each staff member of a school has one single

staff ID; each country has exactly one capital city; or a user on a social media platform has a

single user profile. Those are very rare types of relationships, which you will not frequently

encounter when dealing with databases.

One-to-many relationships

This is a frequently used type of relationship, and it refers to one record in a table being

associated with one or more records in another table: the toreign key of one table references

the primary key of another table. Examples of one-to-many relationships are where one teacher

teaches many subjects; one tourist visits many countries; one person owns many properties;

one person has many bank accounts.

Many-to-one relationships
Many-to-one relationships are similar to one-to-many relationships, but they differ in their

directionality. The availability of the entity and the side of the relationship it is on determines

whether it is a one-to-many or a many-to-one relationship. For example, if one teacher is

teaching multiple subjects, the relationship between the teachers and the subjects is one-to-

many, while the relationship between subjects and the teachers is many-to-one. Examples

of many-to-one relationships are where many students enrol in a single course; many people

work for a single company; there are many galaxies in the universe.

A3 Databases

Many-to-many relationships

This type of relationship appears when multiple records in a table have a relation with multiple

records in another table. Examples of many-to-many relationships are where many customers

purchase many products; many actors act in many movies.

The problem with a many-to-many relationship is that a foreign key attribute can hold a single

value and so it cannot handle the many references required.

To implement such relationships in relational databases you must introduce a linking entity.

This means that two one-to-many relationships will be created: one between the first table and

the linking table and another one between the second table and the linking table.

In the example above, when you wanted to connect the FLIGHTS table with the PILOTS

table, a third table was introduced called PILOTFLIGHT. As such, a relationship of one-to-

many was established between the FLIGHTS and PILOTFLIGHT tables and a relationship of

one-to-many was established between the PILOTS and PILOTFLIGHT tables. This is done

because a many-to-many relationship cannot be physically represented in a database.

B Benefits of relational databases

Community support

Relational databases have been around since the 1970s, and this is the most widely accepted

model for databases. Therefore, there are lots of online communities able to provide support

and guidance in building, maintaining and troubleshooting them.

Concurrency control

Concurrency control is a crucial database management system (DBMS) component. It manages

simultaneous operations without them conflicting with each other, and its purpose is to

maintain data integrity, consistency and isolation when multiple users or applications access

the database at the same time.

Data consistency

Data consistency refers to data remaining in a consistent state from start to tinish, reinforcing

data integrity. This means that all copies or instances of the data are the same across all

systems and databases. In relational databases, each piece of data is stored in only one place,

and all related data is stored together in the same table. This ensures all users have access to

accurate and up-to-date information.

Data integrity

Data integrity refers to the accuracy, completeness and consistency of data throughout its

lifecycle. It ensures the data hasn't been tampered with or altered in any unauthorized way.

Data validation techniques can be used to ensure data integrity.

Data retrieval
The process ot retrieving data from a relational database is efficient and flexible. SQL

allows for complex queries to be written to retrieve exactly the data needed, using SELECT

statements, JOINs, WHERE clauses, and more. Users can also create ad hoc queries to retrieve

darta without needing predefined reports or programs.

Reduced data duplication

Relational databases ensure that you have common fields to be used to link up tables and

match records, without having to duplicate all the details several times. Identifying and

removing duplicate data reduces the amount of storage needed to store the data.

A3.1 Database fundamentals

Reduced redundancy

Data redundancy refers to storing the same data in multiple locations at the same time. This

may lead to inconsistencies, partial updates and unnecessary duplications. Relational databases

allow you to reduce redundancy by normalizing the database (organizing the data to be stored

into several tables, creating relationships between them to avoid repeated groups of attributes,

and correctly enforcing their dependencies; non-key attributes being independent).

Reliable transaction processing

A transaction refers to a sequence of actions performed on a database that is considered as

a single unit (such as inserting, deleting, updating data in a table). A transaction is a unit

of work, or a logical action, that is independent of other transactions and is performed on a

database by a database management system. A transaction is either executed in full or it is not

executed at all. Transactions ensure data integrity and reliability within relational databases.

Scalability

Database scalability refers to the ability of a database to handle increasing amounts of data,

number of users and types of requests wirhout sacrificing performance or availability.

Relational databases are vertically scalable, meaning that they support the idea of adding more

resources (CPU, RAM, hard drive space) to existing systems, which is a cheaper, easier and

faster approach to handling increases.

Security features

Relational databases increase security by controlling access to stored data, ensuring only

authorized users can interact with the database. They allow the assignment of unique user

accounts with specific permissions based on the users’ roles and responsibilities. They allow

different views of tables for ditferent access rights.

B Limitations of relational databases

Big data scalability issues

Relational databases can be more difficult to scale as the size and complexity of the data

increases. The performance can drop when manipulating large data sets (horizontal scaling)

or dealing with complex queries; joins between tables can be slow and indexing strategies can

be difficult to optimize.

Design complexity

Relational databases require a lot of structure and planning to design the tables and the

relationships between them in a way that fits correctly to the requirements.

Hierarchical data handling

Storing hierarchical data in relational databases is challenging due to the mismatch between

the hierarchical structure and the tabular nature of relational databases. Even if this is done

through a strategy such as an adjacency list model (where each record contains a reference

to its parent record, forming a tree-like structure, such as an employee table having a field

referencing the manager’s ID for each employee), it is challenging to retrieve and traverse

hierarchies, especially for large sets of data, or to reorder nodes and perform queries on the

subtrees created.

Rigid schema

Relational databases have a predefined schema (structure of the data and how it will be stored

in the database). Defining the schema can be challenging as it is not easy to predict the data

structure of the database beforehand, and changing it later is complicated. When it comes to

changing the database structure, updating the schema is time-consuming and complicated.

A3 Databases

Object-relational impedance mismatch

Objectrelational impedance mismatch refers to the difficulties encountered when relational

databases are used by a program written in an object-oriented programming language. A

major mismatch between relational databases and OOP languages is the data type differences.

Relational models do not allow the use of by-reference attributes (pointers), while OOP

languages embrace this behaviour. There is no clear way to translate all OOP concepts

into relational databases or vice versa, such as there is no way to translate inheritance to a

relational database concept.

Unstructured data handling

Unstructured data refers to a collection of data where one record differs from another record.

Not being able to identify common fields or attributes for the records makes it impossible to

design a schema for such data (to represent them as relational databases).

(‘Common mistake

When asked to explain concepts such as benefits and limitations of relational databases within

a given scenario, candidates often identify general benefits and limitations without making

any connections to the given scenario. To gain full marks, the scenario must be taken into

consideration, as well as the number of marks awarded for the respective question.

Self-management skills: Create plans to prepare for summative assessments — keep track

of topics that have been covered and how well you mastered each of them. Identify what

you can do to master any topics you found more challenging.

1 Define the terms:

a ‘“primary key”

b “foreign key".

Explain what is meant by referential integrity.

Explain the one-to-one, one-to-many and many-to-many types of relationships.

Discuss the benefits and limitations of a relational database.

v

s

w

N

Define the term "database”.

A3.1 Database fundamentals

Database design

Database schema:

an architecture

showing how data is

organized and how the

relationship between

data is managed.

4 Conceptual

schema: an abstract

model describing the

structure of the data

without considering

how it will physically be

implemented.

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

A3.2.1 Describe database schema

A3.2.2 Construct entity-relationship diagrams (ERDs)

A3.2.3 Outline the different data types used in relational databases

A3.2.4 Construct tables for relational databases

A3.2.5 Explain the difference between normal forms

A3.2.6 Construct a database normalized to 3NF for a range of real-life scenarios

A3.2.7 Evaluate the need for denormalizing databases y
Y
Y
y
Y
V
Y
y
Y
V
Y
V
Y
Y
Y

A3.2.1 Database schema

Database schema is an architecture showing how data is organized and how the relationship

between data is managed. It provides a logical view of the database.

There are different types of database schemas:

B Conceptual schema: An abstract model describing the structure of the data without

considering how it will physically be implemented.

B Logical schema: A detailed design of the structure of the tables (fields and data types),

relationships between tables and constraints.

B Physical schema: Represents the implementation of the logical schema into a specific

DBMS (database management system), showing how data is stored, indexed or accessed.

The use of database schemas improves:

data organization: it provides clear structure for storing and organizing the data

data security: it defines user permissions and views to protect data

data integrity: it uses rules and constraints to maintain data accuracy and consistency

performance: through the use of queries

scalability: it allows for changes to the database without disrupting current applications.

The DBMS controls the creation, maintenance and usage of a database and it mediates between

the data-handling applications and the operating system. The DBMS offers features such as

database queries, forms, reports and charts to display the data.

Bl Conceptual schema
Conceptual schema is a high-level representation of the database, defining its structure

and organization. It is an abstract model that hides details such as implementation of the

data structures or physical storage. It defines the entities, attributes and relationships

between entities.

A common method of implementing conceptual schema is by using entity-relationship

diagrams (ERDs).

A3 Databases

Logical schema:

a detailed design of

the structure of tables

(fields and data types),

relationships between

tables and constraints.

A3.2 Database design

For example, consider a sales system with the following structure:

m Entities

O Products

O Orders

O Customers

m Attributes

[In Products (ProductID, ProductName, Price)

O In Orders (OrderID, OrderDate)

[0 In Customers (CustomerID, CustomerName, EmailAddress)

® Relationships

[0 Customer places an order

[0 An order includes one or more products

Conceptual schema is a model with insufficient details to build an actual database.

M Logical schema
Logical schema is a model that defines the structure of the database, including entities,

attributes, data types, constraints, keys and relationships. It is a design that doesn't take into

considerartion the requirements of a specific database management system (DBMS). The logical

schema is derived from the conceptual schema by:

B converting the entities into detailed tables

m defining the artributes by specitying the data types and constraints for each field in

the table

establishing primary and foreign keys

defining relationships between the tables by using the keys

normalizing the database to minimize data redundancy

ensuring data integrity.

In the previous example:

Tables:

m Products

0 ProductID: INTEGER (PRIMARY KEY)

[0 ProductName: VARCHAR

O Price: REAL

m Orders

[J OrderID: INTEGER (PRIMARY KEY)

DATE

INTEGER (FOREIGN KEY)

INTEGER (FOREIGN KEY)

0 OrderDate:

0 CustomerID:

[0 PRODUCTID:

B Customers

[0 CustomerID: PRIMARY KEY

VARCHAR

VARCHAR, UNIQUE

[0 CustomerName:

0 EmailAddress:

Relationships:

B A customer places one or more orders (one-to-many).

B An order includes one or more products (one-to-many).

Physical schema:

an implementation of

logical schema into a

specific DBMS (database

management system),

showing how data

is stored, indexed or

accessed.

4 Entity-relationship

diagram: a visual

representation of the

entities in a database

and the relationship

between them.

B Physical schema
Physical schema includes specitics of storage devices, access methods, indexing, partitioning,

access methods, views and configuration of the database on the storage media. It translates

the logical schema into an implementarion that fits the requirements of a specific database

management system.

In the previous example:

Tables:

B Products

O ProductID: INT PRIMARY KEY AUTO_INCREMENT

0O ProductName: VARCHAR(100) NOT NULL

O Price: REAL NOT NULL

INDEX on ProductName for taster access based on the product name

® Orders

O OrderID: INT PRIMARY KEY AUTO_INCREMENT

O OrderDate: DATE NOT NULL

0O CustomerID: INT FOREIGN KEY NOT NULL

O ProductID: INT FOREIGN KEY NOT NULL

INDEX on CustomerID and ProductID for faster joins

m Customers

[0 CustomerID: INT PRIMARY KEY AUTO_INCREMENT

[0 LastName: VARCHAR(100) NOT NULL

O FirstName: ARCHAR(100) NOT NULL

[0 Emaildddress: VARCHAR(100) NOT NULL UNIQUE

INDEX on LastName for faster access based on the last name

Storage parameters:

B Use indices described above for fast retrieval of data.

®m Partition large tables like Oxders by OrderID to improve query performance.

A3.2.2 Entity-relationship diagrams
An entity-relationship diagram (ERD) is a visual representation of the entities in the database

and the relationship between them.

Besides providing a clear overview of the database structure, ERDs facilitate communication

between stakeholders; act as documentation for the database design; support future

development and maintenance of the database; and ensure data integrity and consistency

through constraints and well-defined relationships.

For the sales system with Products, Orders and Customers entities, the ERD looks like this:

Customers Products

¢ Ust 0’?‘.'9, Ping
85 7

[e] " m, 0,
e c""‘:"E'r.s

Orders

A3 Databases

Modality in ERDs refers to the minimum number of

one instances of one entity that can be associated with an

instance of another entity. It defines whether the

one and only one participation of an entity in a relationship is optional (0)

or mandatory (1).

Consider an example involving data about patients
ZEero or one . . . -

and their medical records in a medical healthcare

system. Most patients will have associated medical

many records, but new patients or newborn children might

not have any medical history, therefore this is a type of

one or many optional relationship.

On the other hand, if you are to consider an e-commerce

platform, every order must be associated with a customer

M Modality of relationships

Modality: the

minimum number of

instances of one entity

that can be associated

with an instance of

another entity.

Cardinality: the

maximum number of

times an instance in one

entity can be associated

with instances in the

related entity.

STUDENT

StudentID

FirstName

LastName

Email

one club has many students

A3.2 Database design

R
l
m
&
z

+

T

ZEro or many

(you cannot become a customer unless you place an order),

so that is a type of mandatory relationship.

The cardinality of relationships refers to the nature and extent of relationships between entities

in an ERD. It specifies the number of instances of one entity that can or must be associated

with each instance of another entity.

Cardinality refers to the maximum number of times an instance in one entity can be associated

with instances in the related entity. It describes the “many” side of the relationship and it can

be defined as:

H one-to-one

B one-to-many

B many-to-one

B many-to-many.

Tor example, consider a school management system that includes students and clubs as entities.

Entity STUDENT has StudentID, FirstName, LastName, Email as attribures.

Entity CLUB has ClubID, Title, TeacherID, Location as attributes.

The relationship between the two entities can be

represented as “a club has many students™.

Cardinality: one student can enrol in multiple clubs

(one-to-many).

Modality: a club must have at least one student enrolled

CLUB entity name (mandatory for clubs); a student might not enrol in any

clubs (optional for students).
ClubID . o o .

] i Understanding both cardinality and modality is essential
Title attributes . i . .
- herID for accurately modelling the relationships and constraints
eacher . o .

L £ in a database, ensuring it effectively reflects the real-world
ocation . :

requirements and business rules.

Social skills: Support aother students with application skills on practical tasks — help

your classmates to analyse different database scenarios, identify entities, establish the

appropriate relationships between tables and provide feedback to each other on how

appropriate ERDs can be created.

A3.2.3 Data types used in relational databases

Data type for attributes Description

CHARACTER Fixed length text

VARCHAR (n) Variable length text (n indicates the maximum number of characters)

INTEGER Whole number

REAL Number with a decimal part

DATE Date as YYYY-MM-DD

TIME Time as HH:MM:55

BOOLEAN True or False

Choosing the right data type is important for ensuring efficient indexing. For example, using

CHARACTER (8) for fixed-length data like UserID is more efficient than using VARCHAR (8) ,

as this can lead to extra time during query execution due to the variable length storage. Also,

the data type indicates the type of operations permitted. For example, if you store the quantity

and price as fixed-length text, to perform calculations you will need to convert the text to

integer or real values in the application, before using the data.

Another aspect of using appropriate data types is being able to store the data in the database

into the corresponding field. If the type of data does not match the data type of the attribute in

the database, the insertion attempt will throw errors.

Data consistency ensures users have access to up-to-date and accurate information, where all

copies or instances are the same across all systems and database tables. Using different data

types to refer to the same attribute on different platforms (database and application system)

will lead to problems such as not being able to perform operations specitfic to the required data

type, incorrect updates or queries.

A3.2.4 Constructing tables for
relational databases
Properly defining the tables in a database supports the design of appropriate ERDs and ensures

data integrity.

Considering a school management system, this could include the following tables:

B STUDENT (StudentID, FirstName, LastName, DateQOfBirth, Email)

B CLUB (StudentID, ClubTitle, TeacherName)

B TEACHER (TeacherClub, Location)

STUDENT

StudentID FirstName LastName DateOfBirth Email

101 Fatema Kada 02/01/2010 f.kada@email.com

105 Alexandru Buchidau 05/11/2009 a.buchidau@email.com

202 Kada Hussein 07/25/2011 k hussein@email.com

In the STUDENT table, the Student ID acts as a primary key to uniquely identify each record

in the table.

A3 Databases

Normalization: the

process of organizing

data in a relational

database in a way to

reduce data redundancy

and to improve data

integrity.

First normal form:

the status of a relational

database in which

entities do not contain

repeating groups of

attributes.

Atomic: each

attribute in a table

containing indivisible

values (values that

cannot be broken down

into more detailed sub-

values).

A3.2 Database design

CLUB

StudentID ClubTitle TeacherName

105 Robotics Bobby Williams

202 Taekwondo Dima White

101 Robotics Bobby Williams

105 Arts and Crafts Jane Doe

In the CLUB table, the Student ID is a foreign key (as it is a primary key in the STUDENT table).

However, none of the fields in this table can act as a primary key, as they all have duplicates. But

you could set the primary key to be a composite key, formed from the attributes Student ID and

ClubTitle. On the other hand, you could add a new attribute C1ubID to act as a primary key.

In case there is a need for a single field to act as primary key, it is possible to combine data

from several attributes into one to act as a concatenated key.

TEACHER

TeacherClub Location

Jane Doe Arts and Crafts L101

Bobby Williams Robotics H203

Dima White Taekwondo B353

In the TEACHER table, the primary key is a concatenated key, formed from the attributes

TeacherName and ClubTitle.

A3.2.5 Differences between normal forms
Data normalization represents the process of organizing data in a relational database in a way

to reduce data redundancy and to improve data integrity. Data redundancy is reduced as each

item of data only occurs in one location in the database. This can reduce the possibility of

update anomalies occurring, and it makes more etticient use of memory. Normalization leads

to smaller tables with less information in each row, which leads to a reduction of input / output

transfers, and so the CPU can work at tull capacity since the likelihood of CPU activities being

suspended is reduced. Normalization is achieved through a series of stages called “normal

forms”, where each normal form has specific requirements for the table to be considered

normalized at that level.

B First normal form (1NF)
In first normal form, the table:

B has a primary key

B includes no duplicate attributes from the same table

B includes no repeated groups of attributes.

Therefore, you need to create separate tables for each group of related data, identifying each

record by using the primary key, which is made of one single attribute or a set of attributes

(composite or compound key), and ensure the entities do not contain repeated groups

of artribures.

In INF, data in each field must be atomic. This means that each attribute contains indivisible

values (values that cannot be broken down into more detailed sub-values). For example,

an attribute called TeacherName in the TEACHER table is not an atomic field as this could

4 Functional

dependency: a

relationship that

exists between

attributes, where one

set of attributes (the

determinant) determines

the value of the other

set (the dependent).

4 Full functional

dependency: where

dependent attributes

are determined by the

determinant attributes.

Partial functional

dependency: when

dependent attributes

are partially determined

by the determinant

attributes.

Transitive

dependency: a type of

functional dependency

that occurs when a

non-prime attribute is

dependent on another

non-prime attribute,

rather than on the

primary key.

4 Second normal

form: the status of a

relational database in

which entities are in

INF and any non-key

attributes depend upon

the primary key.

Third normal form:

the status of a relational

database in which

entities are in 2NF and

all non-key attributes

are independent.

be turther split into two different attributes called LastName and FirstName. Once this is

achieved, the fields are atomic.

Atomicity ensures that each cell in the table will contain a single value, not complex structures

like arrays or lists.

Functional dependency is a relationship that exists between attributes, where one set of

attributes (the determinant) determines the value of the other set (the dependent). Typically,

this is a relationship between the primary-key attribute and a non-key attribute. For example,

in the STUDENT table, the Student ID (primary key and the determinant) determines the

FirstName, LastName, DateOfBirth and Email values (the dependent). This means

that, given the value of the Student ID, you can find the other details, but not vice versa.

To ensure functional dependency in INTF, you need to ensure entity atomicity and to remove

repeating groups of attributes.

There are different types of functional dependencies:

B Full functional dependency: The dependent attributes are determined by the determinant

attributes. For example, the Student ID fully determines the student’s FirstName,

LastName, DateOfBirth and Email.

B Partial functional dependency: The dependent attributes are partially determined by

the determinant attributes. For example, the Student ID could partially determine

the FirstName, LastName and DateOfBirth of the student, but not their course

instructor for a club.

B Transitive dependency: The dependent attributes are determined by a set of attributes that

are not included in the determinant attributes. For example, in an EMPLOYEES table, the

EmployeeID may determine the EmployeeDepartment, which in turns determines

their salary.

B Second normal form (2NF)
In second normal form (2NF):

B entities are in INF

B any non-key attributes are fully functionally dependent on the primary key; there are no

partial dependencies.

Partial-key dependency occurs in a table that has a composite key as primary key and one or

more non-key attribures are dependent on only a subser of the composite primary key, rather

than on the entire composite key. For example, in the CLUB table, the non-key attribute

TeacherName is dependent on the ClubTitle, but not on the StudentID. As the primary

key in this table is a composite key formed of both the ClubTitle and the StudentID

fields, the TeacherName should have been tully functionally dependent on these two fields.

B Third normal form (3NF)
In third normal form (3NF):

B entities are in 2NF

® all non-key attributes are independent (remove columns thart are not fully functionally

dependent on the primary key); the table contains no non-key dependencies.

Non-key or transitive dependency is a type of functional dependency that occurs when a non-

prime attribute is dependent on another non-prime attribute, rather than on the primary key.

A3 Databases

A3.2 Database design

1f the CLUB table looked like the one below, the primary key in the table would be

ClubID. The ClubTitle is fully functionally dependent on the C1lubID; however, the

TeacherLastName is dependent on the TeacherID, which is not a primary key in the table.

CLUB

ClublD ClubTitle TeacherlD TeacherLastName

105 Robotics 1 Williams

202 Taekwondo 2 White

105 Robotics 1 Williams

106 Arts and Crafts 4 Doe

To resolve this non-key dependency, the table should be split into two: one storing club derails

(ClubID, ClubTitle and TeacherID) and the other teacher details (TeacherID and

TeacherlLastName).

CLUBDETAILS

ClublD ClubTitle TeacherlD

105 Robotics 1

202 Taekwondo 2

106 Arts and Crafts 4

TEACHERDETAILS

TeacherID TeacherFirstName TeacherLastName

1 Bobby Williams

2 Dima White

4 Jane Doe

Normalization issues can encompass data duplication, missing data and a range of dependency

concerns, including data dependencies, composite key dependencies, transitive dependencies

and multi-valued dependencies. For example, a car manufacturer produces two colours (black

and grey) of each model every year. The attributes Colour and ManufacturingYear are

dependent on the field CarModel, but they are independent ot each other. Therefore, they can

be called “multi-valued dependencies” on the CarModel.

Multi-valued dependencies occur when two attributes in a table are independent of each other,

but both depend on a third attribute. This is important for achieving fourth normal form

(4NT), which addresses certain types of redundancy not handled by earlier normal forms.

A3.2.6 Normalized databases (3NF)

Consider a library management system that stores the data in a table called “hooks™

BOOKS

BookID AuthorlD Author Title Pages ProofReader

1 101 Boris Brown History of Al 353 Amanda

2 102 Chris Joe The Great G 200 Hamilton

3 19 Danny Bill Big Tonny 190 Juan

5 101 Boris Brown Amazing Future 399 Amanda

Normalizing this database to 3NF means:

1 Normalize it to INF:

[0 Set BookID as the primary key.

0O Split the author into two different attributes: AuthorFirstName and

AuthorLastName.

BookID = AuthorlD = AuthorFirstName | AuthorLastName @ Title Pages ProofReader

1 101 Baris Brown History of Al 353 Amanda

2 102 Chris Joe The Great G 200 Hamilton

3 19 Danny Bill Big Tonny 190 Juan

5 101 Baris Brown Amazing Future | 399 Amanda

2 Normalize it to 2NF:

[0 Entities are in INF.

[0 There are no partial dependencies.

AuthorFirstName and AuthorLastName are dependent on AuthorID, while Title,

Pages and ProofReader are dependent on the primary key (BookID). Therefore, we

need to split this table as follows:

BOOKS

BookID = AuthorID | Title Pages | ProofReader

1 101 History of Al 353 Amanda

2 102 The Great G 200 Hamilton

3 19 Big Tonny 180 Juan

5 101 Amazing Future | 399 Amanda

AUTHOR

AuthorID | AuthorFirstName | AuthorLastName

101 Boris Brown

102 Chris Joe

19 Danny Bill

3 Normalize it to 3NT:

O Entities are in 2NF.

[0 There are no transitive dependencies.

The ProofReader field has repeating values, and it is not necessarily fully functionally

dependent on the BookID. Therefore, to remove non-transitive dependencies, you can

create a new table for proof readers.

BOOKS

BooklD = AuthorlD | Title Pages

1 101 History of Al 353

2 102 The Great G 200

3 19 Big Tonny 190

5 101 Amazing Future | 399

A3 Databases

(;Top tip!

Normalization of

databases may be a

challenging concept to

grasp. Take the time to

practise this concept;

you can use past

papers’ exercises or

create your own tables

for this purpose.

A3.2 Database design

AUTHOR

AuthorID | AuthorFirstName | AuthorLastName

101 Boris Brown

102 Chris Joe

19 Danny Bill

PROOFREADERS

ProofReaderID | ProofReader

100 Amanda

222 Hamilton

123 Juan

Now, you need to link the BOOKS table with the PROOFREADERS table, so a new table

is created.

BOOKS_PROOFREADERS

BookID @ ProofReaderID

1 100

2 222

3 123

5 100

A3.2.7 Denormalizing databases
There are both advantages and disadvantages to normalizing and denormalizing databases.

Overall, normalization plays a crucial role in designing efficient, maintainable and reliable

databases that support data integrity and consistency while optimizing pertormance

and scalability.

B Normalization
Advantages Disadvantages

Minimizes data redundancy

Data is arganized into separate tables far each entity,

so it reduces data duplicates, saves storage space and

ensures consistency.

Complexity in database schema

Complex schema with multiple tables and

relationships can make it difficult for developers to

understand and maintain the database structure,

especially in large or evolving systems.

Ensures data integrity

Using specific rules regarding relationships and

dependencies, normalization ensures insertion,
update, delete queries and maintains data integrity.

Increased query complexity

When needing to join multiple tables to perform

queries, performance can drop.

Facilitates efficient data retrieval

Well-defined relationships between tables support

the development of efficient queries.

Increased storage requirements

The increased number of tables and relationships

may lead to higher storage requirements.

Supports scalability

New data can be added without significantly altering

the existing structure.

Not ideal for all use cases

Normalization is based on relational database

principles, and it may not fit all applications or types

of data.

Denormalization:

deliberately allowing

for data redundancy

in a database design

to improve the

performance of queries.

Advantages Disadvantages

Promotes data consistency

Eliminating data redundancy and defining clear

relationships promotes data consistency.

Difficulty in balancing normalization

When normalizing a database, you need to aim for

a balance between reducing data redundancy and

maintaining performance. Over-normalization (too

many tables and relationships) or under-normalization

(failing to separate data appropriately) may lead to

maintenance issues and low performance.

Simplifies database maintenance

Changes can be made to a single table without

affecting other tables.

Overheads in updates

Updating records may require changing data in

different places, which can reduce perfarmance or

increase the complexity of update operations.

Bl Denormalization
Denormalization refers to deliberately allowing for data redundancy in a database design to

improve the performance of queries.

Advantages Disadvantages

Improved query performance

There is less need for joins; the simpler structure of

the tables improves the performance of read-heavy

queries.

Data redundancy

There is the possibility of inconsistencies if updates

are not properly managed; it is more challenging to

synchronize and maintain the data.

Simplified data retrieval

Data is stored closer to the way it is accessed by

applications so it allows for faster retrieval of data as

there are less complex joins between tables.

Increased storage overhead

Redundant data requires additional storage space,

which can become significant in large or evolving

systems.

Enhanced scalability

This reduces the overhead of maintaining

complex relationships, so it supports larger data

sets and higher transaction volumes without

sacrificing performance.

Maintenance challenges

Managing denormalized databases requires careful

planning and maintenance to ensure data integrity

and consistency.

There are situations where denormalization can enhance performance, especially when

read performance is crucial and ourweighs concerns about data redundancy and updates

complexity. Some specific scenarios are as follows:

Read-intensive applications

Read-intensive applications refer to applications in which the focus is on retrieving data,

rather than updating it. By reducing the number of tables, relationships and joins, data can be

accessed faster, improving query performance and response time.

Reporting and analytics

Reporting and analytics are used when generating complex reports or analysing large sets of

data. Reducing the number of tables, simplifying relationships and decreasing the need for

joins speeds up reporting and analytics queries.

Data warehousing

In data warehousing, the focus is on storing and analysing historical data from different

sources. Simplifying complex queries across different data sources and using fewer tables to

organize related data improves query performance and response time.

Denormalization simplifies query structures by reducing the need for joins between

tables. Simpler queries are easier to write, faster to execute, easier to understand and easier

to maintain. On the other side, allowing for data redundancy means increased storage

A3 Databases

requirements, and increased complexity in maintenance and update operations. Therefore,

there is a need to find a balance between the two, and this requires:

B analysing the specific requirements of the application (is the focus on reading or retrieving

the data or on updating it?)

B identifying whether the benefits of denormalizing the database are higher than the risk of

data redundancy and complexity (sometimes a partially denormalized schema might be a

solution)

B implementing appropriate strategies to mitigate risks and optimize performance (implement

robust data validation, monitor query performance and storage requirements, and so on).

Independent learning: Independent reflection and targets for improvement - identify

your strongest and weakest points and set short-term goals for achieving success. When

analysing your strongest and weakest points, consider: technical skills and soft skills;

constructive or positive feedback from peers and teachers; successful projects; formative

assessments; and knowledge gaps or technical gaps. Short-term goals will keep you focused;

they will allow you to set an action plan that can be monitored and evaluated progressively.

(®Tok
Utilitarianism, the greatest good for the greatest number. The ends justify the means.

Utilitarianism is an ethical theory that suggests the best action is the one that maximizes overall

happiness or well-being. This approach is often summarized by the phrase "the greatest good for

the greatest number”. According to this view, the moral value of an action is determined by its

outcome or consequences, rather than by any intrinsic qualities of the action itself. For example,

if sacrificing the well-being of a few individuals leads to a greater overall benefit for society, a

utilitarian would argue that such a sacrifice is justified.

When managing databases, particularly those containing personal information, there’s often a

trade-off between privacy and utility. A utilitarian approach might justify the use of personal data

without explicit consent if it leads to a greater good, such as improving public health through

data-driven insights. During a pandemic, health authorities might access and analyse large data

sets of personal health information to track the spread of the virus. From a utilitarian perspective,

the potential benefits to society (for example, controlling the pandemic) might outweigh individual

privacy concerns. The utilitarian principle of “the greatest good for the greatest number” provides a

framework for making decisions about how databases are managed, used and secured.

Discuss how this approach may be balanced against other ethical considerations, such as individual

rights and fairness, which may not always align with a purely utilitarian perspective.

Define the term “schema”.

Discuss the characteristics of a normalized database.

Identify two issues caused by data redundancy.

B

W

N

-

State the characteristics of:

a INF b 2NF ¢ 3NF

5 Distinguish between conceptual and logical schema.

A3.2 Database design

Database programming

Data definition

language: language

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A3.3.1 Outline the difference between data language types within structured query

language (5QL)

A3.3.2 Construct queries between two tables in SQL

A3.3.3 Explain how SQL can be used to update data in a database

A3.3.4 Construct calculations within a database using SQL's aggregate functions (HL)

A3.3.5 Describe different database views (HL)

A3.3.6 Describe how transactions maintain data integrity in a database (HL) y
v
Y
y
v
v
y
w
y
y

A3.3.1 Data language types within SQL
Data language types include data definition language (DDL) and data manipularion

language (DML).

H Data definition language (DDL)
Data definition language (DDL) is used to create, modify and remove data strucrures from a

relational database.

that s used to create, SQL DDL instructions Explanation
modify and remove p— c - o ble view nd

reate a new database object (table, view, index
data structures from a ject (table, view.)
relational database. PRIMARY KEY Set a field as a primary key

FOREIGN KEY ... Set a field as a foreign key by specifying the field and the table it is
REFERENCES ... associated with

ALTER Change the structure of an existing database object: alter a table

structure, by adding or removing columns or adding constraints

DROP Delete database objects (tables, indices, views)

CREATE statements

CREATE DATABASE:

CREATE DATABASE HOSPITAL

CREATE TABLE:

CREATE TABLE Employees |

EmployeeID INT,

DepartmentID INT PRIMARY KEY,

LastName VARCHAR (20)

)i

A3 Databases

4 Data manipulation

language: language

that is used to add,

madify, delete and

retrieve data stored in

relational databases.

CREATE VIEW:

CREATE VIEW EmployeeDetails AS

SELECT EmployeeID, LastName

FROM Employees

JOIN Departments ON Employees.DepartmentID = Departments.

DepartmentID;

CREATE INDEX:

CREATE INDEX idx last name ON Employees (LastName) ;

ALTER statements

Add primary key:

ALTER TABLE Employees

ADD PRIMARY KEY (EmployeelD);

Add foreign key:

ALTER TABLE Employees

ADD FOREIGN KEY DepartmentID REFERENCES Department (DepartmentID) ;

Add a column:

ALTER TABLE Employees

ADD Email VARCHAR(25);

Drop a column:

ALTER TABLE Employees

DROP COLUMN Email;

Add a constraint:

ALTER TABLE Employees

ADD CONSTRAINT FK DepartmentID

FOREIGN KEY (DepartmentID) REFERENCES Departments (DepartmentID) ;

DROP statements

Drop table:

DROP TABLE Employees;

Drop index:

DROP INDEX idx last name;

Drop view:

DROP VIEW EmployeeData;

B Data manipulation language (DML)
Data manipulation languages are used to add, modify, delete and retrieve data stored in

relational databases.

SQL DML instructions Explanation

SELECT Retrieves data from one or more tables

TMSERT Adds records into a table

DELETE Removes records from a table

UPDATE Maodifies existing records in a table

A3.3 Database programming

SELECT statements

Retrieve records by displaying specific columns:

SELECT fieldl, field2, field3...

FROM table name;

Retrieve records by displaying attributes that match a given criterion:

SELECT fieldl, field2,

FROM table name

WHERE condition;

Retrieve all records:

SELECT * FROM table name;

Retrieve records by checking whether specific fields meet specific criteria:

SELECT * FROM table name WHERE condition;

A3.3.2 SQL queries between two tables
Including a JOIN in a SELECT statement allows you to aggregate data from multiple tables. For

example, considering the employees table and the department table, the script below retrieves

the salary expense grouped by department.

B JOIN in a SELECT statement
SELECT Employees.DepartmentName, SUM(Employees.Salary) AS TotalSalary

FROM Employees

JOIN Department ON Employees.DepartmentID = Department .DepartmentID

GROUP BY Department.DepartmentName;

B DISTINCT in a SELECT statement
When you want to retrieve unique records and ignore duplicates, you can use the keyword

DISTINCT.

SELECT DISTINCT columnl, column2z,

FRCOM table name;

B HAVING clause vs WHERE clause
The HAVING clause is used to filter groups of records created by the GROUP BY clause, for

example when needing to retrieve the department ID and the average salary per department

where the average salary is above 10,000.

The WHERE clause is used to filter records before grouping, while the HAVING clause is used to

filter groups after aggregation.

SELECT DepartmentID, Salary

FROM Employees

GROUFP BY DepartmentID

HAVING Salary > 10000;

A3 Databases

I RELATIONAL operators
Relational operators can be used to fetch data that meets specific criteria.

Operator Example

Equals to SELECT * FROM Employees WHERE DepartmentID = 1;

Not equals to SELECT * FROM Employees WHERE DepartmentID <> 1;

Greater than SELECT * FROM Employees WHERE Salary = 10000;

Smaller than SELECT * FROM Employees WHERE Salary < 10000;

Greater than or equals to SELECT * FROM Employees WHERE Salary == 10000;

Smaller than or equals to SELECT * FROM Employees WHERE Salary <= 10000;

B FILTERING

Operator Example

arange

BETWEEN filters values between SELECT * FROM Employees

WHERE Salary BETWEEN 50000 AND 100000;

IN filters values that match any

value in a given list

SELECT * FROM Employees

WHERE DepartmentID IN (1, 2, 3);

IS NULL filters records with null

values

SELECT * FROM Employees

WHERE ManagerID IS NULL;

IS NOT NULL filters records with

non-null values

SELECT * FROM Employees

WHERE ManagerID IS NOT NULL;

SELECT * FROM Employees

WHERE (DepartmentID = 5 AND Salary = 50000) OR

(DepartmentID = 1 AND Salary = 10000);

Combining canditions using logic

operators

H Pattern matching

B LIKE filters values based on a pattern.

®m % is used for any sequence of characters (zero or more).

B is used for one single character.

This will retrieve records that start with the letter D:

SELECT * FROM Employees

WHERE LastName LIKE 'D%';

This will retrieve records that end with the letter d:

SELECT * FROM Employees

WHERE LastName LIKE '%d';

This will retrieve records that match a specific pattern (start with the letter D, followed by a

character, followed by the letter m and followed by zero or more characters):

SELECT * FROM Employees

WHERE LastName LIKE 'D m%';

This will retrieve records that are made of three characters:

SELECT * FROM Employees

WHERE LastName LIKE '_ _ _';

A3.3 Database programming

A
T
N
O
 T
H

B Ordering data
Ordering by a single field:

SELECT * FROM Employees

ORDER BY LastName;

Ordering by a single field in ascending order:

SELECT * FROM Employees

ORDER BY LastName ASC;

Ordering by a single field in descending order:

SELECT * FROM Employees

ORDER BY LastName DESC;

Ordering by multiple fields:

SELECT * FROM Employees

ORDER BY DepartmentID, Salary DESC;

A3.3.3 SQL update queries
SQL statement Explanation Example

INSERT Adds new records INSERT INTO table _name (fieldl, fieldz, ...)

VALUES (valuel, value2, ...);

DELETE Deletes records DELETE FROM table _name

WHERE condition;

UPDATE Modifies records UPDATE table name

SET fieldl = wvaluel, field2 = wvalueZ,

WHERE condition;

Indexed columns optimize query performance, but updating data in indexed columns

may impact performance. When an update is performed tfor an indexed column, the index

needs to be updated as well, which can slow down the operation. Also, index updates can

lead to blocking other transactions that need access to a specific record. To overcome those

challenges, you can batch the updates to reduce the number of times the index needs to be

changed; frequently rebuild or reorganize indexes to reduce fragmentation; or use partial

indexes or filtered indexes to limit the scope of the index only to the most relevant records.

A3.3.4 SQL's aggregate functions (HL)
Aggregate functions are used to perform calcularions on mulriple records based on a given # Aggregate

functions: functions field. Such functions are AVERAGE, COUNT, MAX, MIN, SUM.

used to perform Aggregate function Example
calculations on multiple e

SUM returns the total value of a numerical field SELECT SUM(Salary) FROM Employees;
records based on a given
field, e.g. AVERAGE, COUNT returns the number of records that meet SELECT COUNT(EmployeeID) FROM Employees;

COUNT, MAX MIN the given criteria

SUM. AVERAGE returns the average value of a SELECT AVG(Salary) FROM Employees;
numerical field

MIN returns the smallest value in a field SELECT MIN(Salary) FROM Employees;

MAX returns the largest value in a field SELECT MAX(Salary) FROM Employees;

A3 Databases

View: a virtual table

based on the result

set of a SELECT query.

They do not store data

themselves but provide a

way to present the data

from one or more tables

in a customized manner.

Bl Aggregate functions on grouped data
Using aggregate functions on grouped data aids reporting and decision-making. An example

would be to display the number of employees for each department:

SELECT Department.DepartmentName, COUNT (Employees.EmployeelID)

AS ECount

FROM Employees

JOIN Department ON Department.DepartmentID = Employees.DepartmentID

GROUP BY Department.DepartmentName;

Another example is when you want to display the average salary for each department:

SELECT Department .DepartmentName, AVG(Employees.Salary) AS AvgSalary

FROM Employees

JOIN Department ON Employees.DepartmentID = Department.DepartmentID

GROUP BY Department.DepartmentName;

And yet another example would be to display the minimum and maximum salary

per department:

SELECT DepartmentID, MIN(Salary) AS MinSal, MAX(Salary) AS MaxSal

FROM Employees

GROUP BY DepartmentID;

A3.3.5 Database views (HL)
A view is a virtual table based on the result set of a SELECT query. They do not store data

themselves, but provide a way to present the data from one or more tables in a customized

manner. Multiple views present different subsets of the data to different users, with the data

being presented in different ways according to the user’s needs.

There are several advantages of using views:

B Data complexity hiding: Views can encapsulate complex queries, simplifying the process

for users to query dara without needing to understand the underlying SQL.

B Data consistency: Views can present data in a consistent manner, even if the underlying

tables are modified.

Data independence: The database schema can be changed without affecting the user views.

Performance: Views can increase performance by simplifying complex queries, by

abstracting join operations into a single reusable object (the view).

B Query simplification: Queries can be simplified by breaking them down into smaller parts,

hiding unnecessary details, applying filters and calculations and displaying the results in

a view.

B Read-only or updatable views: When updating a view, the changes are passed through

to the underlying tables from which the view was created, only if certain conditions are

met. If those conditions are met, the view is updatable; otherwise, it is read-only. There are

three conditions for a view to be updatable: it must be a subset of a single table or another

updatable view; all base table fields excluded from the view definition should allow NULL

values; and the SELECT statement of the view should not contain sub-queries (a DISTINCT

predicate, a HAVING clause, aggregate functions, joined tables, user-defined functions or

stored procedures).

A3.3 Database programming @

I z
o
=
=<

A
T
N
O
 T
H
 B Security: Views can limit access to specific attributes or records, providing a way to control

which data users have access to. There are different types of database views. Some of those

types are simple views, complex views or materialized (snapshot) views.

B Simple views
Simple views are views based on a single table that do not include complex queries, such as

aggregate functions or joins.

An example of a simple view is when displaying some fields from a table. In this case, three

fields (EmployeelD, FirstName and LastName) are displayed from the Employees table.

CREATE VIEW EmpNames AS

SELECT EmployeeID, FirstName, LastName

FROM Employees;

Bl Complex views
Complex views are views that include mulriple tables and complex queries, such as aggregate

functions or joins.

An example of a complex view would be to display data from the Employees and

Department tables.

CREATE VIEW EmpDepartment AS

SELECT Employees.EmployeeID, Employees.LastName,

Department .DepartmentName

FROM Employees

JOIN Department ON Employees.DepartmentID = Department.DepartmentID;

B Materialized (snapshot) views
Materialized views are views that can be frequently refreshed that store pre-computed data

sets derived from a SELECT query and stored for later use. As it avoids query re-run (which is

used in regular views), it often delivers data faster. The code below is an example of a view that

displays the employee ID and their salary for each employee in the Employees table.

Creating the snapshot view:

CREATE MATERIALIZED VIEW TotalSalaries AS

SELECT EmployeeID, SUM(Salary) AS TotalSal

FROM Employees

GROUP BY EmployeeID;

Querying the snapshot view:

SELECT * FROM TotalSalaries;

A3 Databases

A3.3.6 How transactions maintain

data integrity in a database (HL)
25 =
o
Z
=<

H ACID
Transactions are sequences of SQL operations that are executed as a single unit of work,

ensuring data integrity and consistency.

ACID is an acronym that refers to the four properties that define a transaction:

B Atomicity

Transactions are atomic (indivisible and treated as a whole). Either all the actions within

a transaction are completed successfully, or none of them is. If any part of the transaction

fails, the entire transaction is rolled back, and the database remains unaffected.

m Consistency

Transactions ensure the data follows predefined rules or constraints. The database must be

in a valid and expected state after the completion of a transaction.

m Isolation

Transactions are isolated from each other to prevent interference. This ensures that

concurrent execution of multiple transactions does not lead to data inconsistencies.

B Durability

Once a transaction is committed and completed successtully, its changes are permanent.

Even if the system fails, the changes made by a committed transaction are preserved.

Durability is important because transaction data changes must be available even if the

database is failing.

(;Top tip!

When approaching exam questions, ensure you make efficient use of terminclogy. Often, candidates

seem to understand the concepts, but they provide generic responses, with their answers often

lacking precision. Terminology must be used precisely when writing responses to gain full marks.

B Transaction control language (TCL) commands
TCL commands in SQL are used to manage the transactions. Some of those commands are:

B BEGIN TRANSACTION: Used to start a new transaction in SQL.

B COMMIT: Used to save all changes made during the current transaction to the database.

Once this operation is performed, the changes are permanent and visible to other users.

BEGIN TRANSACTION;

UPDATE Employees SET Salary = Salary + 100 WHERE EmployeeID = 1;

UPDATE Employees SET Salary = Salary - 100 WHERE EmployeeID = 5;

COMMIT;

In the example above, the UPDATE statements for the two records are written and they are

both saved once the COMMIT statement is reached.

A3.3 Database programming @

A
T
N
O
 T
H
 B ROLLBACK: Used to undo all changes made during the current transaction. It reverts the

database to the state it was in before the transaction began.

In the example below, the two UPDATE statements are reversed, and so the table would

reach its state prior to the updates being made.

BEGIN TRANSACTION;

[[y

UPDATE Employees SET Salary Salary + 100 WHERE EmployeeID

[u

UPDATE Employees SET Salary Salary - 100 WHERE EmployeelD

ROLLBACK;

(®Tok
How has the development of database technology influenced the way we acquire and

process knowledge?

The development of database technology has profoundly influenced the ways in which we acquire

and process knowledge, touching on key areas such as the nature of knowledge, how it is shared

and the ethical considerations involved.

Databases store vast amounts of data, but this raw data only becomes useful when it is processed

into information and then interpreted as knowledge. This raises questions about the nature of

knowledge itself. How do we distinguish between data, information and knowledge? How does the

structure of a database influence what we consider to be true or valuable knowledge?

Databases rely on structured gquery languages (SOL} and other forms of data communication.

The precision and clarity required in database queries contrast with the ambiguity and richness of

natural language. This might lead to a more structured, but potentially limited, way of knowing.

How does the structured nature of database queries influence our understanding of complex or

ambiguous information?

Discuss whether a view is physically stored in a database.

Define the term “database transaction”.

Identify a reason a transaction may need to be rolled back by giving an example.

State the effect of rolling back a transaction.

v

b

W

N

-

Describe the four properties that describe a transaction.

A3 Databases

Alternative databases

and data warehouses (HL)

4 NoSQL database: a

database designed to

handle large volumes

of data and diverse

data types, structured

differently from

relational databases.

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A3.4.1 Outline the different types of databases as approaches to storing data

» A3.4.2 Explain the primary objectives of data warehouses in data management and

business intelligence

» A3.4.3 Explain the role of online analytical processing (OLAP) and data mining for business

> A3.4.4 Describe the features of distributed databases

A3.4.1 Types of databases as
approaches to storing data
Database models represent frameworks that determine the logical structure of a database and

influence how data is stored, organized and manipulated. Different database models cater to

different types of applications and requirements.

B NoSQL databases
NoSQL databases are designed to handle large volumes of data and diverse data types. They

offer tlexibility and scalability, making them suitable for modern web applications, such as

e-commerce platforms, big data and real-time analytics.

NoSQL databases store data differently from relational databases. There are four main types of

NoSQL databases: document databases, key-value databases, wide-column store databases and

graph databases.

Document databases
In document databases, data is stored in documents like JSON (JavaScript Object Notation)

objects. The documents contain pairs of fields and values, and document databases are

used for content management systems and e-commerce platforms. They offer a flexible data

model, suitable for semi-structured and unstructured data sets. They provide an easy way to

represent hierarchical data, but a disadvantage is that they pose a risk of data redundancy and

inconsistency. An example of such a database is MongoDB. Here is an example:

{
"oidn: v12345"

"name": "blabla",

"email": "blabla@car.com",

"address": {

"street": "bloblo street",

"city": "omega city",

b
"services": ["transport", "tourism"]

A3.4 Alternative databases and data warehouses (HL) @

I
=
o
z
<

A
T
N
O
 T
H
 Key-value databases

In key-value databases, data is stored as key-value pairs. Key-value databases are used for real-

time analytics, caching and session management. They are simple databases that allow for fast

read and write operations; however, they have limited querying capabilities. An example of a

key-value database is Redis. Here is an example:

Key: user:12345

Value: {"name" : "blabla", "email": "blabla@car.com", "job":

"transporter"}

Wide-column store databases
In wide-column store databases, data is stored in tables, rows and dynamic columns. Ditferent

rows can have different sets of columns. They enable efficient retrieval of sparse and wide data

and are used in big-data applications or real-time analytics. They are proven to be efficient for

read and write operations on large data sets and are easy to scale horizontally; however, this

is a complex model to implement. An example of a wide-column store database is Cassandra.

Here is an example:

name id email dateOfBirth

blabla 12345 blabla@car.com

nathan 1234 12-12-2000

Graph databases

In graph databases, data is stored as nodes and edges in a graph structure. Nodes usually

store data about people, places or things, and edges store data about the relationships between

nodes. They are used for social-media platforms or recommendation engines. Graph databases

are great for representing and querying complex relationships, but they use a specialized

query language, and it is more complex to maintain and optimize them. An example of a graph

database is OrientDB. Here are two examples of graph databases:

follow

address belong_to place

created_post
serve

commented_at

A3 Databases

B Cloud databases
X

¢ Cloud database: Cloud databases are databases that run on cloud computing platforms, providing scalability, =

3 database that runs high availability and flexible resource management. They can be NoSQL or SQL databases. 2
=

on cloud computing In cloud databases, pricing is based on the use of system resources, which can be provisioned =
platforms, providing

scalability, high

availability and flexible

on demand as needed to meet processing workloads. Organizations can choose between two

models when they opt for cloud databases:

resource management. B Selfmanaged database: An infrastructure as a service (IaaS) environment, in which

Spatial database: the database runs on a virtual machine on a system operated by a cloud provider. The

a database optimized provider manages and supports the cloud infrastructure, including servers, operating

to store and query data systems and storage devices. But the organization is responsible for database deployment,
related to objects in

administration and maintenance, so it has full control over the database.
space, including points,
lines and polygons. B Managed database services: Fully managed by the vendor, both the system infrastructure

In-memory and the database platform are managed for the customer; the vendor handles provisioning,

database: a database backups, scaling, patching, upgrades and other basic database administration functions;

that stores data entirely organizations monitor the database, and they can collaborate with the vendor on some

in the main memory administrative functions.
(RAM) rather than

on disk, providing
extremely fast read and They are used for startups, loT or web-scale applications; they are fully managed, offer pay-as-

Examples of database-as-a-service (DBaaS) are Amazon DynamoDB and Azure Cosmos DB.

write operations. you-go pricing and the organization has limited control over the infrastructure.

Examples of managed databases are Amazon RDS, Google Cloud SQL and Azure SQL

database. They are used for web and enterprise applications, and they depend on cloud

providers and potentially have higher costs.

B Spatial databases
Spatial databases are optimized to store and query data related to objects in space, including

points, lines, polygons, 3D shapes and coordinates. They support spatial data types and spatial

indexes to access the data, and they support geometric functions. They are used tor Geographic

Information Systems (GIS), location-based services and mapping applications. Examples are:

Oracle Spatial, PostGis and MongoDB with Geospatial Indexes. Such models efficiently store

and query spatial data, but they use complex data types and queries that require specialized

knowledge or experts.

B In-memory databases
In-memory databases store data entirely in the main memory (RAM) rather than on disk,

providing extremely fast read and write operations. They are used for real-time analytics,

caching and gaming applications. They allow for extremely fast data access and transaction

processing, but they have low latency for read and write operations. Examples are Redis and

Oracle TimesTen.

A3.4.2 Primary objectives of data warehouses
in data management and business intelligence
A data warehouse is a specialized type of database designed for analytical purposes rather than

Data warehouse:

a specialized type of
database designed transactional processing. It is used to store and analyse large volumes of historical data from

for analytical various sources to support decision-making processes within organizations. A data warehouse

purposes rather than represents a repository of stored data related to a specific subject. It includes tools to extract,

transactional processing. | 1nsform and load data into the repository and tools to manage and retrieve the metadata.

A3.4 Alternative databases and data warehouses (HL) @

A
T
N
O
 T
H

4 Extract: to gather

data from various

operational databases,

flat files, APIs, etc.

4 Transform: to

aggregate and

transform data into

a consistent format

suitable for analysis.

4 Load: to load

transformed data into a

data warehouse.

Business

intelligence:

technologies,

applications and

practices for collecting,

integrating, analysing

and presenting business

information.

4 Online analytical

processing: the

software technology

you can use to analyse

business data from

different points of view.

4 Data mining: the

process of sorting

through large data sets

to identify patterns

and relationships that

can help solve business

problems through

data analysis.

The characteristics of data warehouses are discussed below:

B Append-only
This characteristic means that, when data is loaded using append-only, existing records are

not updated, but instead are appended to tables as new rows. Therefore, at a later stage, the

tables will contain different versions of the records, so that how they changed over time can

be analysed.

B Subject-oriented
Data warehouses are organized around key subjects or themes relevant to the organization,

such as sales, marketing or finance. They help with organizing and presenting data in a way

that is aligned with the analytical needs and objectives of the organization.

H Integrated data
Data from multiple operational systems and external sources are integrated into a single

repository using ETL (extract, transform, load) processes. This consolidates information

from multiple sources into a centralized repository, providing a single source of truth for the

organization. When ETL is carried out, certain precautions should be taken, such as:

B ensuring the extraction does not affect the source system

® ensuring the extracted data can be read by the current system

B ensuring the different data formats being extracted can be converted to become readable by

the system and can be formatted

m ensuring that the data is relevant to what the user wants to extract and utilize.

B Time-variant

Data warchouses store historical data to support time-based analysis, enabling comparisons

and trend analysis over time. Data warehousing is time-dependent because the content in the

data warehouse is only valid for a period, because the data undergoes changes dynamically,

and its focus on change over time is time-variant.

H Non-volatile
Data once loaded into the data warehouse is rarely updated or deleted, ensuring data integrity

and consistency for analytical purposes.

B Optimized for query performance
Data warehouses seek to determine the most efficient way to execute a given query by

considering a variety of query execution strategies. It directly impacts the speed and efficiency

of data retrieval and analysis processes.

A3.4.3 The role of OLAP and data
mining for business intelligence
Business intelligence refers to the technologies, applications and practices for collecting,

integrating, analysing and presenting business information. Its aim is to support data-driven

decision-making and improve business performance.

Online analytical processing (OLAP) and data mining are technologies used for data analysis

and business intelligence, enabling organizations to extract valuable insights and make

informed decisions from their data.

A3 Databases

H Role of OLAP in business intelligence
OLAP facilitates interactive analysis of multidimensional data, allowing users to explore

data from various dimensions, such as time, product or region. It provides pre-aggregated

2 -
o
£
- views of data, which are optimized for querying and reporting, allowing for quick retrieval of

summarized information, and supports decision-making processes. OLAP supports complex

calculations and analytical functions directly on aggregated data, such as year-over-year

comparisons. It supports data visualization techniques, such as charts, graphs and dashboards,

and users can create ad hoc queries to explore data dynamically and answer specific business

questions without needing to rely on predefined reports.

M Role of data mining in business intelligence
Data mining involves discovering patterns and relationships within large data sets, using

statistical algorithms, machine learning techniques and artificial intelligence to uncover

hidden insights. It enables predictive modelling by analysing historical data to forecast future

trends and outcomes, which helps with predicting customer behaviour, demand forecasting

and risk assessment. As such, it helps in customer segmentation based on attributes and

behaviours, by identifying customer segments with similar characteristics for targeted

marketing campaigns and personalized customer experiences. It can detect anomalies in

data, which may indicate fraud, errors or unusual patterns that require further investigation.

Database segmentation can help to increase the profit of the organization, increase its

reputation, increase the number of customers and provide better opportunities for growth.

Data mining techniques include the following:

B C(lassification:

O A supervised learning technique that categorizes data into labels based on input features.

0 Used in spam email detection, sentiment analysis and credit scoring.

® Clustering:

O An unsupervised learning technique that groups similar data points together into

clusters based on their characteristics or proximity in feature space.

O Finds patterns in customer behaviour by grouping and analysing variables to connect

them; it can find previously unknown links that help in decision-making.

[0 Used in market segmentation, customer profiling and anomaly detection.

B Regression:

O Predicts continuous numerical values based on input variables, aiming to establish

relationships between variables.

[0 Used in sales forecasting, price predictions and risk assessment.

B Association rule discovery:

[0 Identifies relationships or associations between items in large data sets, typically in

transactional databases.

0 Looks at how entities or events are connected, and finds where one or more events may

lead to another.

O Correlates the presence of a set of items with another range of values for another set of

variables, breaking up the data sets by variables such as location, age, gender.

O Used in cross-selling recommendations.

B Sequential pattern discovery:

[0 Discovers patterns or sequences in data, where events occur in a specific order, over a

specific period of time (temporal patterns).

O Used in web log analysis and clickstream analysis.

A3.4 Alternative databases and data warehouses (HL) @

A
T
N
O
 T
H

4 Distributed

database: a database

made of two or

more files located on

different sites on the

same network or on

completely different

networks.

® Anomaly detection:

O Identifies rare or unusual patterns in data that do not conform to expected behaviour.

[0 Used in fraud detection, network security monitoring and equipment failure prediction.

A3.4.4 Features of distributed databases
A distributed database is a database made of two or more files located on different sites on the

same network or on completely ditferent networks. Although they are stored on different sites

or different computer systems, they provide a fully functional, unified view of data to users

and applications.

Distributed databases are used in ditterent areas, such as online retailers using them to

manage product catalogues, inventory and transactions across distributed warehouses, and

telecom companies using them to manage subscriptions, network tratfic analysis and service

provisioning across different geographical locations.

Maintaining data consistency in a distributed system is crucial for ensuring the reliability,

accuracy and trustworthiness of data across all nodes and users. This helps with reliable

decision-making; avoiding data corruption; maintaining data integrity; and increasing user

satisfaction and trust.

The role of atomicity, consistency, isolation and durability (ACID) to ensure reliable processing

of transactions in distributed databases is as follows:

B Atomicity

Atomicity ensures that distributed transactions are either committed across all nodes or

rolled back completely if any part of the transaction fails. This prevents partial updates and

maintains data consistency across nodes.

m Consistency

Consistency in distributed systems ensures that all nodes have access to the same

consistent view of data after a transaction is completed.

m Isolation

Isolation prevents interference between concurrent transactions executing on different

nodes. It prevents the modification of the same data item by two different transactions.

B Durability

Durability ensures that committed transactions are reliably stored and replicated across

distributed nodes.

The features of distributed databases are described below:

Concurrency control

Concurrency control refers to techniques used to manage simultaneous access and

modificarions to shared data across multiple nodes in a distributed database. It ensures

that transactions execute correctly and maintain consistency, despite potential conflicts

that may arise due to concurrent operations. Locking mechanisms can be used to enforce

isolation and prevent conflicting operations, or unique timestamps can be assigned to each

transaction to determine the order of execution. For example, ditferent systems may attempt

to access the same data at the same time, such as two systems attempting to update the same

piece of data. If one starts the update and then the second finishes betfore the first is saved,

A3 Databases

this could potentially lead to inconsistent updates. In such cases, the solution is to isolate

the transactions; when one system is accessing the data, that transaction is locked, and it is

released only after the transaction is committed.

Data consistency

All copies of data across distributed nodes are synchronized and reflect the most recent,

correct state of information. Strong consistency models ensure that all updates to data are

visible to all nodes immediately after they occur.

Data partitioning

Data partitioning improves performance, scalability and manageability by distributing data

across multiple nodes or servers. It allows databases to handle large volumes of data and high

transaction rates efficiently.

Data security

By implementing robust security measures and continuously monitoring for threats and

vulnerabilities, organizations can mitigate risks and safeguard sensitive data across distributed

environments effectively. To achieve this, organizations can:

B encrypt sensitive data stored on disks or databases to protect against unauthorized access

B define roles and permissions that restrict access to data based on users’ roles

B use strong authentication mechanisms (multifactor authentication) to verify user identities

before granting access to the database.

Distribution transparency

Distribution transparency refers to the ability to access and manipulate data across multiple

nodes or servers in a transparent and seamless manner.

Fault tolerance

Fault tolerance refers to systems’ ability to continue operating and providing services even

in the presence of hardware failures, software errors or network disruptions, by using data-

redundancy systems, monitoring and recovery in case of failure detection.

Global query processing

Global query processing involves the coordination and execution of queries that span multiple

distributed nodes or databases.

Location transparency

Location transparency refers to the ability of a system to hide the physical or logical location

of resources and services (network address or server details) from users and applications.

It ensures that users can access resources or services without being aware of their specific

location, simplifying system management.

Replication
Replication addresses the creation and maintenance of copies of data across multiple nodes,

servers or locations, which enhances data availability, reliability and performance.

Scalability

Scalability refers to the ability of the database system to handle increasing amounts of data and

user requests by efficiently distributing workload across multiple nodes or servers. It ensures

the database can grow to meet performance and capacity requirements as demands increase.

A3.4 Alternative databases and data warehouses (HL) @

I I
o
z
=<

Social skills: Listen actively to other perspectives and ideas - there are different ways to

solve a problem, some better than others; listen to advice and try new techniques and

problem-solving strategies. In any collaborative environment, actively listening to the

perspectives and ideas of others is crucial for effective problem-solving and decision-

making. Different individuals bring diverse experiences, viewpoints and approaches

to the table, each offering unique insights into how a problem can be addressed. By

carefully listening to others, you not only gain a broader understanding of the problem,

but you also become aware of innovative solutions that you might not have considered

on your own.

1 Define the term "data mining"”.

2 Define the term “data warehouse”.

3 Describe how regression is used in data mining.

4 Describe the concurrency control feature in distributed databases. Explain how this can

be achieved.

5 Explain the role of integrated data in a data warehouse.

6 Outline two methods to ensure the security of a data warehouse.

7 Compare classification and sequential pattern discovery in data mining.

8 Outline the differences between a database view and a data warehouse.

D T L T R T

@ Linking questions
1 What processes are needed to store data in database structures so that they can be used in

machine learning? (A4)

2 How does database programming in SQL differ from programming computationally in a

high-level language? (B2)

To what extent is the effectiveness of the distributed database determined by the network

that connects the various tables? (A2)

How could machine learning be applied to databases? (A4)

5 How do programming languages interact with databases to store, retrieve and manipulate

data? (B2)
D A YT E T s

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
a
s
s
s
s
s
a
n
n
s
s
a
n
a
n
a
E
s

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
a
n
s
n
n
s
s
a
s
n
n
n
s

w

A3 Databases

The database will have the following tables:

Operator (OperatorID, OperatorName, Location)

Engineer (EngineerID, EngFirstName,

Ticket(TicketNo,

TicketPriority)

Location, Status,

Supplier(SupplierID, Email, PhoneNo)

Product (ProductID, ProductName, Price, SupplierID)

1 A telecommunications company is designing a relational database to store its desk tickets.

EngLastName, EngLocation, Salary)

OperatorID, TicketDate,

ProductOrder(TicketNo, OrderID, ProductID, Quantity, EngineerID)

Identify the primary key for each of the tables described above.

Identify three benefits of a relational database.

Construct an ERD for the relational database.

Construct the SQL DDL instructions to create the Ticket table.

a

m
o
n
o

-

T
a

-

Construct the SQL DML statements to return the total product quantity ordered by

the engineer with the engineer ID D893.

Identify a foreign key in the Product table.

State whether the database is normalized and whether it is in third normal form (3NF).

Describe the characteristics of a database that is in third normal form (3NF).

The following table is an example of the Engineer table.

3]
E]
3]
(1

4]
(1
(1
E]

EngineerlD EngFirstName EnglLastName EngLocation Salary

D&33 Daniel Buchidau Trier 7000

D894 Constantin Canstantin Heidelberg 6000

D895 Martin Bond Cologne 6500

Define the term "tuple”. Give an example of a tuple from the Engineer table.

State the number of fields in the Engineer table.

ke Construct an SQL statement to increase the salary of the engineer with the ID D894

by 300.

I Construct SQL statements to update the Engineer table to include two more fields:

one called Experience, to store how many years of experience each engineer

has, and one called IncreaseDate, which includes the date when the last salary

raise occurred.

m Construct an SQL script to find the average salary in the Engineer table.

State what a transaction is and identify the four properties that define a transaction.

Identify three advantages of using views in a database.

Explain three data mining techniques.

Compare cloud and spatial databases.

Describe two features of distributed databases.

Identify and compare a NoSQL database with a relational database.

Explain the role of online analytical processing (OLAF) in business intelligence.

Explain the COMMIT transaction control language (TCL) command.

0 Other than COMMIT, identify another transaction control language (TCL) command. =

0

0
0
N
V

A
s
W
N

[2]
(1

[2]

[4]
[2]
[2]
3]
(el
4]
(2]
(4]
E]
(1
(1]

A3.4 Alternative databases and data warehouses (HL)

A4 Machine learning

Machine learning fundamentals

¢ Generative Al:

a form of artificial

intelligence capable of

generating text, images,

audio, video and other

digital artefacts, usually

in response to a prompt.

It is a form experiencing

rapid advances at the

time of writing.

Machine learning:

a branch of Al where

computers learn from

data and experiences to

perform specific tasks or

solve specific problems,

without being explicitly

programmed to do so.

Artificial

intelligence: computer

technology able to

perform tasks and

make decisions in a

manner that imitates

human intelligence.

There are two main

forms of Al: narrow (or

weak) Al is designed to

perform specific tasks

or solve specific types

of problems; general

(or strong) Al processes

human-level intelligence

and can operate across a

range of domains. While

speculation persists that

general Al is “close”, at

this time only narrow Al

technology is available.

What principals and approaches should be considered to ensure

machine learning models produce accurate results ethically?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A4.1.1 Describe the types of machine learning and their applications in the real world

> A4.1.2 Describe the hardware requirements for various scenarios where machine learning

is deployed

A4.1.1 Types of machine learning
and their applications

(;TOK
What counts as knowledge?

Machine leaming models “learn” from data, which raises questions about what constitutes

knowledge.

Views on knowledge often distinguish between knowledge gained through experience (empirical)

and knowledge gained through reasoning (rational). Machine learning models acquire knowledge

empirically by processing vast amounts of data. However, unlike humans, machines do not

“understand” or reason about this data in the human sense. This raises the question: Can the

patterns and predictions that machines generate be considered “knowledge”, or are they simply

data-processed outputs?

Welcome to the world of machine learning! We live in a time of exciting growth and rapid

innovation in machine learning. Generative Al is making global headlines and has changed

the way we live and work in a very short timeframe. Speculation is rife that “general AI” is not

far from becoming reality. Certainly, it is an exciting topic, but what are machine learning and

artificial intelligence, and how do they work? Gaining an understanding of what is happening

behind the scenes is the goal of this chapter.

This chapter will not seek to dissect the details of the latest, greatest, news-making

developments in the field. That would be a fool's errand as it would be obsolete before the

book is printed. Instead, the aim is to give you a solid understanding of the core theories and

techniques that form the basis of the entire field of machine learning. From these foundations,

you will be in a much stronger position to understand the true implications of modern

developments occurring in the field.

Before proceeding any turther, it is important to clarify and differentiate berween the terms

machine learning (ML) and artificial intelligence (AD). Artificial intelligence is a broad field that

seeks to create systems capable of performing tasks that typically require human intelligence.

A4 Machine learning

(.-Top tip!

Take the time to

appreciate the

differences between

types of machine

learning: supervised,

unsupervised,

reinforcement, deep

learning and transfer

learning. Know what

scenarios each is best

suited for, and the

typical algorithms

used in each category.

In this topic, terms

and definitions are

foundational for

answering theoretical

questions accurately.

Using terminology in

an incorrect context

will cost marks.

Neural network:

a computer algorithm

that imitates the

design of the human

brain by using a set of

interconnected nodes

for the processing and

analysing of data.

Ad4.1 Machine learning fundamentals

This can include, but is not limited to, reasoning, learning, perception, problem-solving,

understanding and interaction. Machine learning is a subset of artificial intelligence that

focuses on the learning aspect of AL Tt seeks to teach computers to learn from data, identify

the patterns in that dara and make decisions based on what it has learned, with minimal

human intervention. Implementing machine learning programmatically is heavily reliant on

the mathematics of statistics, linear algebra and calculus.

Machine learning applications are being increasingly used throughout commerce, industry,

research and government. They are used for everything from market analysis to robotics; from

generative art to diagnosing medical conditions. The applications for machine learning will

only grow as the technology continues to develop.

‘Within machine learning, there are many further subcategories we will consider in A4.3

Machine learning approaches. These can be broadly described as:

supervised learning: linear regression

supervised learning: classification

unsupervised learning: clustering

|

|

|

B unsupervised learning: association rule

B reinforcement learning

B genetic algorithms

m artificial neural networks

| convolutional neural networks.

H Deep learning
The term “deep learning” is used to imply the use of a neural network within a machine

learning algorithm. There are a variety of machine learning techniques that work perfectly

fine without the need for a neural network, so the “deep learning” term is used to distinguish

between those that do and those that do not make use of a neural network. For example, you

can refer 1o “reinforcement learning” and “deep reinforcement learning”.

A neural network is where algorithms and data structures have been constructed in

such a manner as to replicate biology’s understanding of how the brain functions: as an

interconnected network of neurons, each of which has various input connections and generates

an output on the basis of the combination of inputs.

inputs

dendrites

activation

function

!

linear

function

nucleus

B Comparison of a biological neuron with that used by artificial neural networks

4 Supervised

learning: when a

machine learning

algorithm is provided

a data set of pairs of

items, where the pair

comprises a value and

what response the

network should provide

if it sees that value. By

learning the answers

to the values given,

the network will make

generalizations to be

able to estimate the

answer when given a

previously unseen value.

Regression: machine

learning where the

output generated should

be a numerical value.

Classification:

machine learning

where the output

generated should be a

category, chosen from

among a discrete set of

categories available.

A more detailed examination of how neural networks function will be provided in A4.3.8

Artificial neural networks.

(;Common mistake

Deep learning is a subset of machine learning. Deep learning is not separate from machine

learning, but rather is a specific approach within it. It utilizes layers of neural networks to extract

progressively higher-level features from the input. Machine learning includes many other types of

algorithms that do not require neural networks.

B Supervised learning
Supervised learning refers to an algorithm that is trained on labelled data sets. These data sets

comprise example input values, and the correct output response that should be given if the

algorithm sees something resembling that input. Generally, the larger and better the data set,

the more accurate the results that will be produced by the supervised learning algorithm. Data

sets used by the major technology companies contain many millions of records.

Supervised learning can be used for regression and classification tasks.

A regression task is where the algorithm is predicting a numerical value for the output within

an allocated range, for example:

® A grade-prediction algorithm might take inputs of hours studied, attendance record, class

participation, scores on previous tests, hours spent on homework; and output a final

predicted grade in the range 0-100.

B A weather-forecasting algorithm might take inputs of historical temperatures for each day

over the last week, humidity, wind speed, air pressure; and output a predicted temperature

for the coming day in a given range.

A classification task is where the algorithm predicts which category the input item belongs

to, for example an image recognition algorithm might input an image and seek to classify it as

either a dog or a muffin.

GCommon mistake

Confusing the goals of regression and classification

Be clear about the difference in outputs between regression and classification tasks in supervised

learning. Regression models predict a continuous output (numerical values), whereas classification

models predict categorical outputs (class labels). For example, predicting the price of a house

based on its features (like size and location) is a regression problem because price is a continuous

variable. On the other hand, determining whether an email is spam or not spam is a classification

problem because there are discrete categories (spam or not spam) to choose from.

A music genre classification algorithm may input song tempo, rhythm, pitch, instruments

used; and output the music genre as either pop, rock, hip-hop, classical, and so on.

A handwriting recognition algorithm may input an image of a character and seek to classity it

as an individual letter, number or punctuation mark.

A4 Machine learning

4 Unsupervised

learning: a method of

machine learning where

the data set does not

include the “answers”

or expected outputs for

the data provided. The

algorithm will attempt

to discover the patterns

on its own.

Reinforcement

learning: machine

learning by trial and

error. Based on what

it has learned at any

moment in time, the

algorithm selects an

action to take in a

given environment. The

environment provides

feedback (called a

“reward”), which the

algorithm will use to

learn from and refine its

decision-making process

moving forward.

Ad4.1 Machine learning fundamentals

Hl Unsupervised learning
Unsupervised learning is where the algorithm is constructed to identify patterns or structures

within its data sets without being provided with an explicit label indicating the correct output.

This may be because the nature of the data involved doesn't lend itself to having a “correct”

response paired with it, or because the algorithm is constantly learning based on user

interactions that don't have a fixed right or wrong answer. Examples include:

B Analgorithm that seeks to identify a user’s social group: The input data may consist of

social-media activity such as likes, comments and follows. The algorithm could analyse this

data to identify other users with mutual acquaintances or similar interests. Interestingly,

this type of social-group analysis can take place without needing any content from the

messages or chats between the parties involved. This is why social-media companies such

as WhatsApp are perfectly happy to offer end-to-end encrypted messaging as, even without

the message content, just knowing how many messages are exchanged between each pair

of users is enough to perform social-group analysis.

B Rerail stores use unsupervised learning to find associations and correlations between

the different products that customers purchase, and identify similarities in purchasing

behaviour and preferences. The reason that so many brands run customer loyalty schemes

is it allows them to build a profile of data to match against other customers, from which

they can tailor marketing strategies.

B Media companies such as Netflix, Spotify and YouTube use unsupervised learning to

train recommendation systems to refine their suggestions to users for future watching

or listening.

M Reinforcement learning
Reinforcement learning is where the algorithm looks at its input data and decides on a

particular output, and is then informed how good or bad thart decision was after the fact.

It uses that information to refine future actions when presented with a similar situation.

Reintorcement learning can be thought of as learning from trial and error.

Some common situations where reinforcement learning is used include:

B Gaming: Reinforcement learning algorithms can be trained to act as Al players or bots

within computer games.

B Robotics: Reinforcement learning can be used to teach a robot how to walk, pick up objects

or perform other mechanical tasks. As a subtype of robotics, autonomous self-driving cars

also make use of reinforcement learning to better and more safely navigate the complexities

of roads and traffic.

m Finance: Reinforcement learning bots can trade securities on the market and receive

feedback based on whether the bot made or lost money on the trade.

B Recommendation systems: Reinforcement learning can also be part of a suite of algorithms

used in generating user recommendations. The engagement of the user (did they watch or

listen to the suggested item?) can be used to provide feedback to the algorithm to refine

future recommendations.

Transfer learning:

when a previously

trained machine learning

model is applied to

a similar yet new

situation, context or

problem. The goal is to

speed up the training

process by using an

already trained model,

even if the problem is

slightly different.

(.-Common
mistake

Transfer learning is

not just about using

a pre-trained model.

It involves adapting a

mode! developed for

one task to solve a

related one; not just

reusing an existing

model without

modifications. It's

crucial where data is

scarce or similar tasks

are involved.

B Transfer learning
Transfer learning is where the knowledge gained from solving one problem can be used to

help solve a different but somewhat related problem. The benefit of transfer learning is that

it requires less data, as the algorithm is already partially trained and may just require a little

fine-tuning for the new task being asked of it.

Consider the following examples:

B Image recognition: Given a model that has been trained on a massive data set such as

ImageNet (over a million labelled images and 1000 different categories), transfer learning

could take that model and fine-tune it to recognize specific types of objects, such as a

species of flower or breed of dog. The model would already be adept at processing images

and easily able to identify features such as edges and shapes, so it would only need to learn

how to distinguish between the new categories.

® Speech recognition: Using a generalized model that has been trained on spoken language

to transcribe it into text, transfer learning can be used to adapt it to work with particular

accents or specialized jargon for use within a particular industry.

B Customized chatbot: By using a publicly available pre-trained LLaMA (large language

model meta AI), a company might fine-tune it by training it on customer-service logs to

create a chatbot that can be added to its website for handling domain-specific queries.

® Customized image generators: Pre-trained models for tools such as Stable Diffusion can be

further extended and fine-tuned to generate images that mimic a particular artistic style, or

be specialized in images for a particular industry or domain. This can be done relatively

quickly and easily without the burden of redoing the massive task of original training that

went into the underlying model.

A4.1.2 Hardware requirements
The hardware required for machine learning purposes will continue to innovate and

evolve throughout the lifetime of this text. Accordingly, this section is not going to make

recommendations as to specific model numbers of processors, but will rather discuss the broad

categories of hardware technology available and their various use cases.

B Computing platforms

Standard laptops

The starting point is obviously the standard laptop available on the retail market. At the

time of writing, this might be an i7 processor with 16 GB or 32 GB of RAM, or an Apple

Silicon equivalent.

These machines are generally limited to small-scale machine learning tasks, such as the

development and testing of a simple machine learning model. For educational purposes,

there is a lot that can be done with a standard laptop, but you would not want to be training a

commercial-grade machine learning model with such equipment as it would be too slow, and

lack sufficient memory or storage.

Some recent developments do aim to improve the capacity of standard laptops when it comes

to machine learning. One is the introduction of Apple Silicon M processors into Apple

MacBooks. Apple integrates the CPU, GPU, neural engine and other components into a single

system-on-a-chip (SoC) structure, allowing better performance and energy efficiencies. By

integrating the CPU and GPU functions on to a single chip, they pool and share the same

A4 Machine learning

memory. This is in contrast to the traditional approach of GPUs having their own dedicated

memory, separate from the RAM used by the CPU. This is why those with an Apple Silicon-

based computer are often able to perform machine learning tasks that traditional Intel laptop

owners are unable to do without access to a dedicated GPU.

Not wanting to allow Windows users to be left behind, Microsoft has launched its Microsoft

Copilot Al-supported branding, which requires laptops to have an integrated neural processing

unit (NPU), which is discussed further in the section regarding CPUs coming up.

Dedicated workstation

After a standard laptop, the next step would be the purchase of a dedicated desktop

workstation with a GPU, such as an NVIDIA RTX.

Having a true GPU can offer an order of magnitude improvement in processing speeds for

machine learning calculations and would serve as an excellent platform for some quite

sophisticated projects.

The primary advantage of a GPU is its parallel processing capabilities, which come from

having thousands of small processing cores that are optimized for parallel processing. Machine

learning algorithms often involve performing the same computations on large amounts of data.

GPUs can perform these same calculations on different values simultaneously, whereas a CPU

has to queue them up for processing one by one.

Edge devices

Ldge devices refer to computing systems that perform data processing at or near the location

where data is being generated, rather than relying on centralized computing resources such as

the cloud.

Processing data locally reduces the need to send data back and forth to a distant data

centre. This reduction in data being transmitted has the added benefit of improving privacy

and security.

The downside is that you are still committed to investing in the physical hardware

infrastructure yourself, along with all the maintenance workload associated with it.

Cloud-based platforms

To perform training on large or complex models generally requires the use of online cloud-

based platforms (in lieu of investing in the massive infrastructure yourself). Cloud platforms

are accessible over the internet and provide services on demand to users worldwide.

These cloud providers allow you to vary the combination and specifications of CPUs, GPUs and

Tensor Processing Units (TPUs) available for your project on demand. They can also scale to

provide large quantities of RAM, storage and network connectivity, as required. The cloud-based

services are also useful for deployment of your model as an API for other systems to access.

The main downside with cloud-based platforms is the dependency and reliance your

project will have on an external provider. You have to trust their data and network security

arrangements; you have to transmit your data to their network to have it perform tasks for you;

and you are committing yourself to the monthly subscription costs involved. The flexibility of

cloud-based systems always comes with a cost, and this should not be treated lightly.

At the time of writing, the major industry leaders that provide cloud-based platforms with

machine learning specialist equipment available include AWS, Google Cloud and Microsoft

Azure. A good tool for getting started with minimal set-up requirements is Google Colab; it

allows you to create a Python Notebook and utilize GPU or TPU technology just by changing

the settings in the Runtime menu.

Ad4.1 Machine learning fundamentals

Tensor: a

mathematical term for

an array with three

or more dimensions.

A single number (no

dimensions) is known

as a “scalar”. A one-

dimensional array of

numbers is known as

a "vector”. A two-

dimensional array of

numbers is known as a

“matrix". Three or more

dimensions is known as

a “tensor”.

&)

High-performance computing (HPC) centres

In contrast to the publicly available, user-pays approach of cloud-based providers, HPC

centres are dedicated facilities designed to support large-scale scientific or academic research

objectives. In this way, access to an HPC is more restricted, often requiring membership;

affiliation with an academic or research institution; or specific research grants or time

allocation processes.

They are data centres that have been designed to be suitable for highly demanding workloads

that require sustained high-performance computing resources. They are built around a model

of catering to resource-intensive computarional tasks, not an as-a-service model.

Many universities have made investments in their own HPCs for use by their research students.

B Processors for machine learning
Having considered the various platforms available for accessing the computing power

necessary for machine learning, it is time to review the electronics within the computers that

make machine learning happen.

Central processing units (CPUs)

CPUs are the generalized processors inside all modern computer systems. They are designed

to perform a wide range of computing operations, are highly flexible and can process complex

tasks. They are not specialized devices designed specifically for machine learning. While it is

feasible to perform some introductory machine learning tasks with a CPU, they are generally

limited to tasks that do not require intensive parallel processing.

Neural processing units (NPUs) have recently been integrated alongside rraditional CPUs

in consumer-level laptops. NPUs are specialized processors designed specifically to handle

the computations required for neural networks and deep learning, such as matrix and vector

operations. By having specialized processors in the computing device, it provides faster

processing times and lower power consumption for Al-related tasks, compared to general-

purpose CPUs.

As of 2024, laptops marketed as being Microsoft Copilot Al-supported include NPUs with a

minimum capability of 40 TOPS (trillion operations per second).

Graphics processing units (GPUs)

GPUs contain hundreds or thousands of small cores designed for highly parallel tasks such as

rendering graphics. The GPU allows all the cores to perform the same calculation on different

values simultaneously, so if there are large arrays that need processing, where every element

requires the same operation performed, GPUs provide significant time savings. GPUs excel at

parallel processing of matrix and vector operations, which is the very mathematics that forms

the basis of neural networks.

The presence of a dedicated GPU can often produce training speed improvements of up to ten

times over using just a CPU.

Tensor Processing Units (TPUs)

Building on the idea of the GPU, the TPU was custom-designed by Google specifically for

tensor computations. They are optimized for high volume, low precision calculations to

increase the efficiency of neural network tasks. Low precision in this context typically means

calculations occur at a maximum of 16 bits, in contrast to the 32 bits or 64 bits in a normal

GPU. Machine learning generally does not require that level of precision, so 16 bits or even

8 bits will do the job.

A4 Machine learning

At the heart of a TPU is a large matrix multiplication unit. Matrix multiplication is

fundamental to neural networks, so having a unit within the processor specifically optimized

for this task helps make TPUs well suited for machine learning.

The TensorFlow library is tailored to make use of TPUs when available, and Google Cloud

services, such as Google Colab, make TPUs easily available for the general public.

Application-specific integrated circuits (ASICs)

ASICs are custom-designed for a specific use rather than general-purpose computing. They

are engineered to perform a particular set of tasks with optimal efficiency. They offer peak

performance and efticiency for these tasks, but lack the general-purpose flexibility of a CPU.

1f your machine learning workload can be precisely defined and won't change much over time,

an ASIC may perform these tasks faster than a GPU or TPU as, while these are optimized for

parallelism, they are still generalized processors.

Due to the degree of specialization involved, ASICs tend to be more energy efficient and have

lower operating costs over the long term. The downside is that the uptront cost is typically

very high as the chips require custom design and development. This means they are really only

viable where a machine learning application is going to be deployed on a very large scale, as

the per-unit cost of the ASIC will decrease significantly with scale when mass-produced.

Examples of well-known, mass-produced ASICs include the Apple A-series chips used in

iPhones and Qualcomm’s Snapdragon.

You should conduct some research into the current state-of-the-art ASICs available for machine

learning operations at the time of reading, and be familiar with what differentiates them from

just using a typical GPU or TPU.

Field-programmable gate arrays (FPGAs)

FPGAs can be programmed and reprogrammed to perform specialized computing tasks,

offering a balance between the flexibility of CPUs / GPUs and the efficiency of ASICs.

As such, they are ideal for prototyping machine learning models or applications that require

custom hardware acceleration, however that may change over time.

FPGAs are used for high-frequency trading systems where microseconds can make a

significant difference in the profitability of trades.

(;Common mistake

Confusing the differences between each of the processor types

There are a lot of separate technologies listed in this topic, many of which you will not have had

personal hands-on experience with. That makes it harder to have an intuitive understanding of the

differences between them.

B ASICs are designed for specific tasks and are not reprogrammable.

FPGAs are versatile and can be reprogrammed.

GPUs are great for parallel processing tasks.

TPUs are specialized chips designed by Google, optimized for tensor calculations in deep

learning for large-scale models.

NPUs are designed to accelerate neural network computations for consumer-grade devices.

Ad4.1 Machine learning fundamentals

(;Top tip!

Adapt the following as a guide to help determine which is the ® For models requiring future flexibility, are future

best device for a given scenario. updates expected?

B For large and complete models, does it require real-time [0 Yes: FPGAs, due to their reprogrammability

processing? [0 No: ASICs or GPUs, depending on whether the task is

O Yes: Consider GPUs for their parallel-processing more about speed or parallel processing

capabilities B Is low cost more important than cutting-edge

0 No: TPUs might be a better choice for batch performance?

processing with high efficiency in tensor operations [Yes: Consider older generation GPUs or cloud-

B For real-time inference (using a model for decision-making based solutions where hardware costs can be easily

after training), is the model deployed on edge devices? absorbed

[Yes: NPUs or ASICs, for optimized power and m Will there be a need to quickly scale processing power?

efficiency

O No: Consider FPGAs for flexibility or ASICs for

efficiency if the task won't change

[0 Yes: Cloud GPUs or TPUs can offer scalable resources

as required

A hospital is integrating a system that can automatically diagnose diseases from patient-

imaging data.

a Describe whether this system should be classified as artificial intelligence, machine

learning or deep learning.

b Distinguish between regression-based and classification-based machine learning.

An email client uses a program to sort incoming emails into “Primary”, “Social”,

“Promotions” and “Spam” folders.

a Identify whether this is an example of supervised or unsupervised learning.

b Describe your reasoning for this choice.

An autonomous vehicle company transfers the knowledge from a model trained in one city to

a new model designed to navigate another city.

a Define “transfer learning”.

b Outline how this is an example of transfer learning.

¢ Qutline one possible limitation to the effectiveness of this approach.

d The original model was trained from thousands of hours of driving on roads under human

supervision to monitor and correct it when required. Describe the form of machine

learning used for the original model.

A tech start-up is planning to deploy a large-scale machine learning system to predict stock

prices in real time.

a Identify one type of hardware that would be critical for processing large volumes of real-

time data in this context.

b Qutline one reason that this type of hardware is suitable for real-time data processing in

machine learning applications.

¢ Discuss one potential limitation of the identified hardware when used for

machine learning.

A university plans to implement an Al-driven system to analyse video lectures for enhancing

online learning experiences.

a lIdentify two types of hardware that could be used for conducting machine learning

processing of video data in real time.

b For the two types of hardware identified, outline one possible reason for selecting each

device over the other.

A4 Machine learning

Data preprocessing (HL)

(;Tnp tip!

Spend significant time

on data preprocessing,

visualization and

analysis.

Understanding the

data is as important

as understanding the

algorithms.

Outlier: a data point

that deviates from the

typical pattern of values

in a data set, indicating

a possible unusual or

erroneous value that

should be discounted.

Ad.2 Data preprocessing (HL) @

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A4.2.1 Describe the significance of data cleaning

> A4.2.2 Describe the role of feature selection

> A4.2.3 Describe the importance of dimensionality reduction

EE I
o
Z
=<

A4.2.1 Data cleaning
High-quality dara builds high-quality models. If the training data is full of errors or redundant

features, the model will learn from these inaccuracies and make poor predictions.

Taking the time to ensure your data is as clean as possible will reap rewards with respect to

efficiency and accuracy. There are several steps that may be useful for cleaning your data set.

1 Handling outliers: Statistical methods, such as using the interquartile range or Z-scores,

can detect outlying data. Once found, depending on the context, outlying data may be

capped, transformed or removed as appropriate.

Python

r

1
1
1
: import numpy as np

: # Create random array of wvalues between 0 and 100

I # Set one extreme value to act as an outlier
1
1 data = np.random.randint(0, 100, size=1000)

| data[e9s] = 937
: # Calculate outliers via Z-scores

| mea = np.mean(data)

: std dev = np.std(data)

I z scores = (data - mean) / std dev i = L

1 threshold = 3 # Outliers if 3 stddev from mean

: outliers = data[np.abs(z_scored) > threshold]

: print ("mean", mean, "stddev", std_dev)

| print("Outliers:", outliers)

: # Calculate outliers via IQR

: gl = np.percentile(data, 25)

I g3 = np.percentile(data, 75)

: igr = g3-gl

: cutoff = 1.5 * igr
1
1
1
1
1
1
1
1
L

lower bound = gl - cutoff

upper bound = g3 + cutoff

outliers = data[(data < lower bound) \ (data > upper bound}]

print ("Outliers:", outliers)

A
T
N
O
 T
H
 2 Removing duplicate data: [dentifying and removing duplicate data will assist in preventing

the model from becoming biased towards over-represented values. For data sets where

individual records contain a large number of variables, calculating and comparing SHA256

hash values can be a useful mechanism for detecting duplicates (see Section B4.1.6 for more

about hash values). Depending on the context of the model, near-duplicate data may also

need to be consolidated into a single record.

3 Identifying incorrect data: Process your data through validation rules to ensure obviously

incorrect data can be found and removed. This may mean checking the ranges given for

dates and times, or amounts given for currency values, and so on. Set sensible limits and

have your program detect anomalies for possible manual checking.

4 Tiltering irrelevant data: If there is no measurable correlation between an input variable

and the outcome variable, it may be completely irrelevant and contribute nothing to the

predictive power of the model. Keeping such data in the training process is only going to

make the process less efficient and less accurate.

Additionally, just because data may appear to be correlated doesn’t mean it is. As the

Spurious Correlations website demonstrates, if you compare enough unrelated data sets,

you will find correlations that are, in fact, not.

The number of movies Tom Hanks appeared in Robberies in Alaska
cormelates with correlates with

The number of special education teachers in Georgia Professor salaries in the US

2.0 T7K 1287 $130.6K

P
g T2 T.0K % 11449 $137.3K

: ¥ & g £ ss 83K 8 3 $135.0K &
a S—]
b @ B8
2 3e 57K e e $132 6K

-

B T I i T 1 1 T 1 1 T 1 i T T T T T i

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2013 2015 2017 2019 2021

#—The nurr r T ks af ire: he M ts in Ala: S FBI Cr

=0l L: ion | i i

B L) | I A

1 wdary i W T K

2 30 1 ! Jl Center | !

(q \spuri jon

W Tom Hanks movies vs special education teachers in Georgia M Robberies in Alaska vs professor salaries

5 Transform improperly formatted data: Data may be incorrectly formatted but easily

correctable to ensure consistency in what is presented to the machine learning model,

for example:

O Ensure all dates are in a consistent style (not having a mix of day / month / year, month

/ day / year, or 1SO yyyy-mm-dd formats).

[0 Ensure numerical values are formatted, and to the same level of precision.

[Ensure images are correctly rotated and oriented, and of matching ratio and size.

6 Missing data: Sometimes it may be necessary to use models to predict missing values to

ensure tull coverage of the data set. Mean / mode imputation, k-nearest neighbours or

regression models could be used for this, if required.

7 Normalization and standardization: Many machine learning algorithms will benefit from

completing preprocessing of data by performing the statistical operations of normalization

and standardization to scale data to a standard range or distribution.

00 Normalization can be used to rescale input data to a range of [0,1] or [-1.,1], which is

useful when various features (input variables) have different scales.

O Standardization can be used to transform the input data to have a mean score of 0 and

standard deviation of 1 (Gaussian distribution). (Note that it is not mathematically

possible for the range to be [-1,1] and to have a standard deviation of 1; you need to

determine which is required for your model.)

A4 Machine learning

(;Common

mistake
Python

import numpy as np

data = np.array([10, 20, 30, 40, 50])

Normalize the data to have a mean of 0, and have range [-1, 1]

kg =
o
Z
=<

]
1
1

1
1

Ignoring the :

important role that 1

normalization and : data_mean centered = data - np.mean(data)

standardization play : max abs val = np.max(np.abs(data mean centered))
Recognize that 1

normalization (scaling :

data to a range) :

and standardization 1

(scaling data to :
have zero mean 1

and unit variance) L

are crucial for many

algorithms to perform

optimally. Appl .
tese ransinmations A4.2.2 Feature selection
consistently across

all data used in (

the model. . TOK

How does the way that we organize or classify knowledge affect what we know?

normalized data = data mean centered/max_abs val

print (normalized data)

Standardize the data to have a mean of 0, and std dev of 1

standardized data = (data - np.mean(data))/np.std(data)

print (standardized data)

The structuring of data sets and the choice of features directly influence the insights gained from

machine learning algorithms.

The way data is structured can significantly determine what the machine learning model can learn.

For instance, missing values; the inclusion or exclusion of certain data points; or the way categories

are defined and labelled can all skew or bias the model’s outputs. This structuring determines how

the machine “views" and “understands” the world, directly influencing the patterns it recognizes

and the predictions it makes.

The features chosen can amplify or suppress certain patterns within the data. For example, in a

model predicting creditworthiness, choosing features like income might reflect economic factors,

whereas including features like zip code could inadvertently introduce socio-economic biases related

to geographical areas.

The decisions made in data structuring and feature selection are not value-neutral. They reflect the

Feature: a numeric biases, perspectives and priorities of those who design the data sets and algorithms.
property that can be

used to contribute a

data point for a machine Feature selection refers to taking care to select only the most relevant features for use in your

learning algorithm to machine learning models. In the context of machine learning, a feature is a variable that

train on. Think of it as a you wish to use as input values for generating predictions. While it may seem like a lot of

variable in your data set. additional effort to perform manual fearure selection, the process can dramatically impact the

overall performance and accuracy of your machine learning model.

(;Com mon Removal of irrelevant detail will result in a more generalized model that is better suited to

mistake processing new, previously unseen data.

D Three commonly used methods to help determine which features to select are filter methods,

the importance of wrapper methods and embedded methods.

feature selection and
engineering. Good . See also

features are often

more important

than the choice of

model itself.

For more detail on these approaches, along with example code, search online for scikit-learn’s

section 1.13 "Feature selection” documentation (https://scikit-learn.org/stable/modules/

feature_selection.html).

s
s
s
s
s
s
s
n
n
n
s

Ad.2 Data preprocessing (HL) @

A
T
N
O
 T
H

Research skills:

Select and analyse

an existing open-

source data set

relevant to a

specific machine

learning problem.

Learn about the

data cleaning and

feature selection

process used by

these “professional”

projects, and make

recommendations

for students

learning to use

data-cleaning

methods for the

first time.

M Filter methods
So-called as they help “filter out” features, filter methods involve applying a statistical metric

to determine which features are best to be retained and which should be removed from the

model. Features are ranked by their score, and those that don’t meet the threshold can be

filtered out.

As a purely statistical measure, using filter methods is less computationally expensive than

retaining the feature in the model for full training. The downside is this does not detect

interaction between features. That is, if one feature is affecting another, then a filter may

suggest deleting a feature that is actually important. This is where manual appreciation of the

context of your model is always important.

The most common, and easy-to-use, filter is to calculate the r value of the correlation

(Pearson’s product moment correlation coefficient). The r value of a data set may be

calculated using

. Ex, =¥, -¥)

where x and y, are your individual data points and % and § are the mean of each data series.

Omnce calculated, records with r values beyond a given threshold can be flagged for deletion.

B Wrapper methods
Wrapper methods involve iterating over different combinations of the input features and

comparing which subset produces optimal performance.

Selecting the best subset

/’/‘—\
generate a _ learning

subset algorithm
w

set of all features ——» ——» performance

B Wrapper methods

This can be a time-consuming and computationally expensive process, especially when

compared to filter methods. There is also an increased risk of overfirting the model. The

benefit, however, can be a very quick and efficient final model at the end of the process.

For further study on suitable techniques, do some research into recursive feature elimination

(RFE), and sequential feature selection (forward selection, backward elimination). The scikit-

learn library (online) provides functionality for both.

B Embedded methods
Embedded methods draw on both filter and wrapper methods, but incorporate them directly

into the model training algorithm. This means that the feature selection is performed

simultaneously with the model training, rather than as a separate step before training.

Embedded methods can be more computationally efficient since they don't require separate

iteration of the data prior to training. An embedded method will automatically assess the

relevance or importance of features and adjust their weights or inclusion in the model

accordingly during the training process.

While embedded methods can save manual labour by eliminating the need for feature selection

processes prior to training, they typically require more computational time compared to

simpler filter methods. The effectiveness of embedded methods depends on the model’s ability

to accurately assess feature relevance during the training process.

A4 Machine learning

Curse of

dimensionality: each

feature in a machine

learning model adds

another dimension

to the overall model

the algorithm is

attempting to map and

create generalizations

about; the curse of

dimensionality refers

to the problem that

occurs when there are

too many dimensions

relative to the quantity

of data available, so

that patterns cannot be

meaningfully observed.

Data sparsity: how

“spread out” data

points are from each

other in a model.

Ad.2 Data preprocessing (HL)

A4.2.3 Dimensionality reduction
When gertting started with machine learning, it is easy to make the mistake of giving too much

data to your model. While more quality entries in your data set is usually good, supplying too

many features for each entry can easily cause more harm than good.

A typical way of thinking about this as a beginner would be “The more attributes or features

1 supply, the more detail about my data the model will learn, and perhaps it'll discover a

pattern that T hadn't thought of”. The problem is that machine learning algorithms are at their

best when they are able to make generalizarions about the training darta. If there is too much

detail in each item, and not enough items overall to compensate for that extra detail, then

challenges arise.

These challenges are known as the curse of dimensionality, and describe the problems

that arise in highly dimensional data. The following visualization is a useful way to help

understand the problem.

1d space 2d space 3d space

2

[] S
@ L NG|

—sbodecion — ool >
° | ot

ol
hd ™ o B A

0 10 20 30 40 50

Density: 10 + 4=2.5 Density: 10+ 16 =0.625 Density: 10 + 64 = 0.156 d

M Data increases in sparsity as more dimensions are added

In the first panel, there are 10 data points in one dimension, which represents one feature or

variable that the model is training with. With 10 points spread across a range of [0,4], there are

2.5 data points per unit. Visually, you can see it is quite crowded, meaning there is a lot of data

available to make conclusions and generalizations from.

In the second panel, the same 10 data points are now spread across two dimensions. While

both dimensions still have the range [0,4], the effect of the extra dimension is that it squares

the space available, so those 10 data points now spread out such that there are only 0.625 data

points per unit.

In the third panel, the third dimension is added. With three dimensions, representing three

features or variables, there is now only one data point per 0.156 units of space.

The additional detail that comes from adding the extra dimensions acts to spread the data out,

making it a lot more difficult for the model to find the generalizations it needs to be useful. To

keep the ratio of data points to space consistent, the third panel needs 160 items in its training

data instead of just 10. If you don’t compensate for additional dimensions with additional

quantity of data, the quality of your model will deteriorate.

The empty cells in the diagram above are an example of data sparsity, which is where the data

points are too far from each other, and the data set contains a high number of empty values. If

asked to generate a prediction when given those values that are empty in the training set, the

model will have no basis on which to make an accurate estimation.

Sparsity is problematic as it makes it difficult for models to find patterns without overfitting,

which is where the model effectively memorizes the individual items in the data set, including

the noisy little details.

A
T
N
O
 T
H
 Distance metrics, such as calculating the Euclidean distance between points, lose meaning as

the distances between all pairs of points are similar (a long way away). Without being able to

find the patterns needed to make generalizations, the model will not be useful with unseen,

untrained data when you need it to be.

An over-abundance of dimensions also poses challenges for you and those on your developer

team with respect to data visualization. The mental capacity required to visualize highly

dimensional data is very difficult or impossible, and most humans struggle to wrap their mind

around more than three dimensions. This lack of intuition will make it difficult to analyse the

patterns and relationships within your data.

While increasing the sample size will help compensate for additional dimensions with respect

to model accuracy, it does introduce its own issues. Large sample sizes require increased

processing time and capacity for training, and increase memory usage requirements. Every

additional dimension already adds an extra order of magnitude to the memory required by

the model, so the increase in sample size required not to lose model accuracy only exacerbates

the memory and processing requirements. This all works to reduce the accessibility of your

model for limited hardware environments such as mobile or portable computing, home / office

computing and those without specialized infrastructure such as GPUs.

Tor these reasons, it can often be better to reduce rather than increase the number of

dimensions in your machine learning model. Keeping it simple will help the model learn the

generalizations it needs and reduce the demands on your limited processing hardware.

(;Common mistake

Misunderstanding the goals of dimensionality reduction

It is important to bear in mind that dimensionality reduction does not always lead to better model

performance. The primary goal of dimensionality reduction is to simplify the model by reducing

the number of variables, which can help in some cases but might also lead to loss of critical

information. There is a careful balance to be struck with the retention of relevant data aspects,

which can take a lot of practice to get right.

B Reducing dimensions of existing data sets
You can either make decisions about which dimensions to reduce manually, or make use of

statistical tools to assist in the process.

Two commonly used statistical techniques to help reduce the number of features are PC/

(principal component analysis) and LDA (linear discriminant analysis). PCA and LDA are

beyond the scope of your course, but you don’t have to know how they work to be able to make

use of them in your IA (if you wish or need to), as scikit has the functionality built in.

PCA is used for dimensionality reduction without considering your data set labels. It’s good [or

data compression, visualization and speeding up learning algorithms by reducing the number

of input variables.

LDA is supervised in the sense that it uses your training data labels. It reduces a data set to

a specified number of dimensions in a manner that best discriminates between the classes,

based on their statistical properties. For this reason, it is particularly used to prepare data for

classification tasks.

A4 Machine learning

(;Top tip!

Sklearn, also known

as scikit-learn, is a

Python module for

machine learning built

on top of SciPy and

distributed under the

4-Claude BSD licence.

To install this module,

please refer to the

instructions at https:/

scikit-learn.org/stable/

install.html

(.-Top tip!

import numpy as np

from sklearn.datasets import make classification

from sklearn.decomposition import PCA

from sklearn.discriminant analysis import

LinearDiscriminantAnalysig as LDA

Generate synthetic data

x will be 2d array of 1000 rows, 20 columns

v will be 1d array of integers of values 0, 1 or 2

%, y = make classification(n samples=1000, n features=20,

n_informative=10, n_redundant=10,

n clusters per class=1l, n classes=3)

print ("Original Data Shape:", x.shape)

PCA

Transform sample data from 1000x20 to 1000x2

pca = PCA(n_components=2)

% _reduced pca = pca.fit transform(x)

print ("PCA Reduced Data Shape:", x reduced pca.shape)

LDA

Transform sample data from 1000x20 to 1000x2

lda = LDA(n_components=2)

¥ _reduced lda = lda.fit transform(x, y)

print ("LDA Reduced Data Shape:", x reduced lda.shape)

@ See also

For more about using scikit-learn tools to help reduce dimensions in your data sets, search

online for scikit-learn’s section 1.2 “Linear and Quadratic Discriminant Analysis” (https://scikit-

learn.org/stable/modules/Ida_qda.html).

For discussing data preprocessing needs in an examination

setting, be sure to attain a thorough understanding of the

different role and effect of each one.

Some key points to remember for each one:

B Inputting missing data: The input of missing data will

improve model accuracy through providing a complete

data set, but it can introduce bias if the resulting data set

does not match actual data distribution.

B Deleting missing data: Simplifies the model by

removing incomplete cases to reduce overfitting, but this

could lead to the loss of valuable data.

B Removing duplicates: Enhances reliability and prevents

skewing of results.

B Removing outliers: The model can become more

generalized as it prevents extreme values from

disproportionally influencing predictions.

Ad.2 Data preprocessing (HL)

Filtering irrelevant features: By concentrating on

what is most relevant, the model will perform better and

faster. It reduces the risk of overfitting.

Normalization and standardization: IVost algorithms

perform better when features are all on a similar scale.

Filter methods: Computationally less expensive, they

can be used regardless of model type.

Wrapper methods: Provide better performance as

they consider feature interaction and are tailored to the

model in question. If the data set is small, it can lead

to overfitting.

Embedded methods: A balanced approach between

filter and wrapper methods, their effectiveness is

dependent on the model they are designed for.

A
T
N
O
 T
H

1 A marketing firm uses machine learning to analyse customer survey data to improve

targeting strategies.

a Describe one common issue in survey data that would necessitate data cleaning.

Describe how feature selection could impact the performance of a machine learning

model in this scenario.

¢ Qutline the role of dimensionality reduction in handling high-dimensional data such as

survey responses.

2 Afinancial analytics firm uses machine learning to predict stock-market trends based on

historical data.

a List one common data-quality issue that might require cleaning in this historical stock data.

b Describe the role of feature selection in improving model performance in financial predictions.

¢ Describe the importance of dimensionality reduction on model complexity

and performance.

3 Aschool district analyses standardized test results to predict student performance and

identify at-risk students.

a List one common data issue that might arise with standardized test-result data.

b Describe the possible implications if the school district was to import raw test data for all

questions completed by students into the machine learning model.

¢ Qutline two commonly used methods of feature selection that could be beneficial in this

educational context.

A4 Machine learning

Machine learning approaches (HL)

Linear regression:

a machine learning

algorithm that seeks a

linear line of best fit for

a given data set, from

which extrapolations

can be made.

Ad .3 Machine learning approaches (HL)

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

> A4.3.1 Explain how linear regression is used to predict continuous outcomes

> A4.3.2 Explain how classification techniques in supervised learning are used to predict

discrete categorical outcomes

» A4.3.3 Explain the role of hyperparameter tuning when evaluating supervised

learning algorithms

> A4.3.4 Describe how clustering techniques in unsupervised learning are used to group

data based on similarities in features

P> A4.3.5 Describe how association rule learning techniques are used to uncover relations

between different attributes in large data sets

P> A4.3.6 Describe how an agent learns to make decisions by interacting with its

environment in reinforcement learning

» A4.3.7 Describe the application of genetic algorithms in various real-world examples

> A4.3.8 Outline the structure and function of artificial neural networks (ANNs) and how

multi-layer networks are used to model complex patterns in data sets

» A4.3.9 Describe how convolutional neural networks (CNNs) are designed to adaptively

learn spatial hierarchies of features in images

» A4.3.10 Explain the importance of model selection and comparison in machine learning

(‘Key information

Before proceeding into this chapter, it is important to note that the syllabus content statements

above are limited to “Explain”, “Describe” and “Outline”.

This chapter intentionally contains additional detail that is beyond the syllabus, such as programming

code samples demonstrating the use of various algorithms. You do not need to be able to

read or write programming code for the different algorithms presented here in your

IB examinations.

The additional detail has been provided due to machine learning being an extremely popular

subset of Computer Science. In discussions with students, many expressed a desire to learn beyond

descriptive theory for these topics, and a wish to know how these algorithms work and how to use

them. Students also commonly express an intention to experiment with machine learning algorithms

within their internal assessments. For these reasons, this introduction is more in-depth than is

required solely for the examinations.

A4.3.1 Supervised learning: linear regression
Linear regression refers to calculating the correlation and line (or plane) of best fit among the

values of a data set, and then using the resulting equation of the line to make predictions for

new, unseen data.

Linear regression is one of the earliest machine learning algorithms to be developed, and can

even be calculated manually for limited data sets as they are purely mathematical constructs.

EE I
o
Z
=<

A
I
N
O
 T
H
 (; Top tip!

Always check the

relationship between

variables with scatter

plots to see whether

they are roughly linear.

There is no point using

linear regression if it

doesn't fit the data.

200

175

D
e
p
e
n
d
e
n
t
 v
ar
ia
bl
e

u

N

2

N

o

A

A

25

Linear regression can be used to help answer such questions as:

B Given a person’s height, is it possible to predict their weight?

B Given the number of hours a student studies for a test, is it possible to predict their result?

B Given the dollars spent on advertising a product, is it possible to predict the sales volume?

B Given the size of a home in square meters, is it possible to predict its sale price?

As hopefully you can infer from the name, linear regression is only suitable where there is a

linear relationship between the independent and dependent variables.

The graph below illustrates a simple form of linear regression with one independent variable

(the predictor) and one dependent variable (the response).

To explore the process involved for linear regression of one

independent and one dependent variable, the equation for

the line of best fit can be calculated using the least squares

regression line, which will minimize the distance between

the line and individual data points.

By assigning the independent variable to x, and the

dependent to v, you can use the standard equation of a line

to make predictions.

y=a+bx

The slope, or gradient, of the line, b, represents the amount

that the prediction will change for every increment of one in

the independent variable. To calculate b, you find the sum of

Independent variable

M Linear regression example

Python

Sample data

99,176])

Using scikit,

Convert the 1D

model . fit(x, v)

import numpy as np

import matplotlib.pyplot as plt

from sklearn.linear model import LinearRegression

x = np.array([45,48,65,68,68,10,84,22,37,88,71,89,89,13,59,66,40,88,47,89])

y = np.array([98,92,134,135,136,30,175,54,70,182,148,169,187,20,126,142,90,186,

calculate the model

x = x.reshape (-1,

model = LinearRegression()

20 o a0 100 the difference between each point of the line from the mean:

_ X X0, -3

Ilx, — %0
The point of intercept, a, is the baseline value for the dependent variable when the independent

b

variable is 0. To calculate a, take the coefficient multiplied by the mean of x and subtract it

from the mean of y.

a=y-bx

As linear regression is such a common and popular task, both NumPy and scikit-learn libraries

have tools built in to perform these calculations for you. The following example uses scikit-

learn, as we will use the library a lot for other algorithms coming up.

array of 20 columns, to a 2D array of 20 rows 1 column each

1

1

1

1

1
1

1
1

1

1

1

1

1

1
1

1

1

1

1

1) 1
1

1
1
1
a

A4 Machine learning

intercept = model.intercept

slope = model.coef [0]

= = -
o
Z
-

Using scikit, generate a prediction where the independent variable is 70

X _test = np.array([[70]]) # New single data point for prediction

y_test predict = model.predict(x_test)

print (f"Prediction for independent variable value 70: {y test

predict [0]}")

Using matplotlib, plot the data and the line of best fit

x line = np.array([[0], [100]])

y line = np.array([[intercept], [intercept+100*slope]])

plt.scatter(x, y, color="blue")

plt.plot(x_line, y_line, color="red", linewidth=2)

plt.xlabel ("Independent variable")

plt.ylabel ("Dependent wvariable")

plt.title("Linear Regression example")

plt.show()

P T P T Y

@ See also

Reference the scikit-learn documentation for supervised linear regression by searching online

for scikit-learn’s “LinearRegression” (https://scikit-learn.org/stable/modules/generated/sklearn.

linear_model.LinearRegression.html).
P A T F T T T Y s

s
s
s
s
s
s
s
n
n
s
s

Bl Measuring accuracy
Assessing the accuracy of the model can be performed by calculating the R-squared value, also # R-squared value

(or coefficient of known as the coefficient of determination. It is a measure of the proportion of variation in

determination): a values from the independent variable data, and what the model would have predicted for that

statistical measure that point. A value close to 0 indicates the model does a poor job of explaining the relationship of
indicates how well
the linear regression

model fits the data
points given. Why use a measure that relies on squaring? Why not just take the average of the absolute value

the data, whereas a value close to 1 indicates the model does an excellent job of mapping the

relationship of the dara.

of the difference between the predicted and actual values? There are a few reasons:

B Squaring means larger errors will become more pronounced than smaller errors. Absolute

differences would treat all variations the same.

B Squaring results in a function that can be differentiated; a very handy benefit for

optimization algorithms that rely on derivatives. Absolute values in a function cannot

be differentiated.

m Squared differences are used within classical statistics with respect to assumptions around

normalization, so it is convenient to stick with that approach.

There are approaches, other than R-squared value, that can be used, including:

® adjusted R-squared: modifies the formulae to account for the number of predictors in

the model

mean squared error: the average of the squares of the errors

mean absolute error: the average of the absolute value of the errors

B mean absolute percentage error: the average of the absolute percentage errors of predictions.

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H
 With NumPy, the r-squared value needs to be calculated through each step, whereas scikit-

learn has a built-in merhod for the rask.

Python

Method 1: Using numpy

y predicted = model.predict (x)

y_residuals = y - y predicted # Difference between actual and predicted values

ss res = np.sum(y residuals**2) # Sum of squares of the residuals

ss_tot = np.sum((y - np.mean(y))**2) # Total sum of squares

r squared = 1 - (ss res / ss tot) # R-sqguared value

print (f"R-squared: {r squared:.z2f}")

Method 2: Using scikit-learn

r_squared = model.score(x,y)

print (£"R-squared: {r squared:.2f}")

Bl Multidimensionality
The previous example illustrates simple linear regression where there is only one independent

variable. In real-world applications, it is highly likely that you will want to model against

several independent variables. This is known as “multiple linear regression”.

While most humans can mentally visualize data in two, or perhaps three, dimensions, it

becomes extremely challenging to visualize beyond that. The good news is our software tools

have no problem modelling the relationship across multiple dimensions. Here is an example

using scikit for a linear regression model that has four independent variables.

Python

import pandas as pd

from sklearn.model selection import train test_split

from sklearn.linear model import LinearRegression

Load the data and assign features (independent variables) to x, and the target

(dependent variable) to y.

1
1
1
1
1
1
1
1
1
1
1
1

df = pd.read csv("Multidimensional example.csv") :

x = df[["Feature 1", "Feature 2", "Feature 3", "Feature 4"]] :

y = df["Target"] 1
1

Train the linear regression model 1

model = LinearRegression() :

model.fit (x, y) 1
Generate prediction for new data point :

new point = np.array([[50, -150, 30, 1001]) :

prediction = model.predict (new_point) :

print (£"Predicted target for the new sample: {prediction[0]}") 1
1
Ll

The Multidimensional_example.csv file can be downloaded from https:/github.com/

paulbaumgarten/hodder-ibdp-computerscience

The prediction for the new data point used in the code should be 510.7.

A4 Machine learning

Classification

techniques: where

a machine learning

madel has been

trained to identify,

from a predefined list

of categories, which

category (or class) the

input data would most

likely be associated with.

GTop tip!

Regression with non-linear data?

If you have a data set you would like to fit to a non-linear function, the scipy curve fit()

function is what you are looking for.

For example, assuming you have NumPy arrays of x _ data and y _ data that you wish to fitto a

quadratic function:

___ _

Python

import numpy as np

from scipy.optimize import curve fit

x data = [....... your data here....... 1

y data = [....... your data here.......]

def my quadratic(x, a, b, c):

return a * x**2 + b * x + ¢

params, params covariance = curve fit(my quadratic,

x_data, y_data)

a, b, ¢ = params # Extract the fitted coefficients

For more information, search online for scipy.optimize.curve_fit (https://docs.scipy.org/doc/scipy/

reference/generated/scipy.optimize.curve_fit.html).

A4.3.2 Supervised learning:
classification techniques
One task frequently required of machine learning algorithms is to classify data as belonging

to one of a given range of categories. Whereas the output prediction from linear regression

is numeric, classification algorithms generally produce a non-numeric value to represent

a category.

Categorization through machine learning is useful as it facilitates automation of decision-

making processes and can be applied to a wide range of practical problems. Examples of

everyday classification problems include:

email spam detection (spam or not spam)

m medical diagnosis (disease or no disease)

B credit score (good credit risk or poor credit risk)

B image recognition (identifying what category of object is in the image)

m natural language processing / sentiment analysis (positive or negative sentiment)

B recommendation engine (what genre of movie to suggest next).

Two popular methods that do not require neural networks are k-nearest neighbours and

decision trees.

Ad .3 Machine learning approaches (HL)

A
T
N
O
 T
H

K-nearest

neighbours: where

data points are

categorized based on

the categories of the

nearest points around

them in the data set; k

is a variable representing

how many of those

nearest points should

be used to "vote”

and determine what

category to assign the

new value.

B K-nearest neighbours
K-nearest neighbours is a machine learning technique that allows classification of data based

on patterns learned from existing labelled data.

(;Top tips!

u Normalize or standardize data because KNN is sensitive to the magnitude of data points.

B Choose an odd number for k when the number of classes is even to avoid tie situations.

B Experiment with different distance metrics (e.g. Euclidean, Manhattan) to see which performs

best for your data set.

-

3]
*

-

.

2 . = A [] = . "

~N 4 1

g . 3 i : . .,

H 1 0 e T
[-

. . 0

.

ol ¢ .
e

1 -

- T T T T T
-2 -1 0 1 2 3

Feature 1

B K-nearest neighbours

Consider the chart above, in which the data have been classified into either blue dots or red

dots. The two axes represent the different features (variables) that have been measured. These

can represent anything (such as size, weight, length, time, cost, review rating), provided they

can be measured and plotted on a numeric scale.

The green dot represents a new value that the model has not seen before. How can k-nearest

neighbours be used to determine whether the green dot should be classed as belonging to the

blue group or the red group?

With KNN, a value k is selected 1o represent how many nearby data points should be used to

determine the prediction output. The algorithm will then determine the k-nearest points, and

allow each of them to “vote” as to which final category the prediction should award.

The following charts illustrate the decision boundary for different values of k.

n_neighbours = 1 n_neighbours = 3
4 4

3 2 3 22

~ 2 . ~ 2 .
[.' . [:1] o . g
£ 1 . > 21
2 &
0 - 0

-1+ L] -1

I [1 |

-2 2 3 3

B KNN where k=1

Feature 1

B KNN where k=3

A4 Machine learning

n_neighbours = 5 In the examples here, values of k of 1, 3 and 5 have

4 been used. ,:E

3 M When k = 1, the line represents the boundary to the nearest g

single point of either category. Normally, this is susceptible >3

; 2 8 to being influenced by outliers, so avalueof k=3 or k=5

214 = B is more typical.

& o L It is important when selecting between two categories to

. ensure that k is an odd number to avoid the situation where

N there could be a tie!

2 2 3 The data set for the charts shown here is the knn_dataset.

Feature 1 csv file that can be downloaded from https://github.com/

B KNN where k=5 paulbaumgarten/hodder-ibdp-computerscience

Python

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier

Load the data

df = pd.read csv("knn dataset.csv")

= df [["Feature 1", "Feature 2"]].values

= df ["Label"] .values

New, unknown point to classify

N
3

X

= np.array([[0.4, 1.6]])

Create and fit the KNN classifier with 3 neighbours

knn = KNeighborsClassifier (n neighbors=3)

knn.fit(x, v)

Plot the training points

plt.scatter(x[:, 0], x[:, 1], c=y)

plt.scatter(z[:, 0], =z[:, 1], color="red", zorder=5)

plt.xlabel ("Feature 1")

plt.ylabel ("Feature 2")

plt.title("n neighbors=3")

plt.xlim(xx.min(), xx.max()})

ple.ylim(yy.min(), vyy.max())

plt.show ()

Make the prediction

predicted category = knn.predict(z)

print ("The predicted category for point z is:",

predicted category[0])

One example application of KNN is in the development of collaborative filtering

recommendation systems. Consider a scatter plot for two movies that a wide number of users

have reviewed and rated. The x axis may represent the ratings by each user for movie A, and

the y axis may represent the ratings by each user for movie B.

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H

Decision tree: a

graphical representation

of conditions that will

result in a classification

decision being made;

think of it as a decision-

making flowchart that

the machine learning

model creates.

Mark a new point on the plot for the target user, who has viewed movie A but not movie B.

By referring to the other points on the scatter, KNN can infer what the target user would rate

movie B. If the prediction is tor a high rating, the model can recommend the user to watch

that movie.

(In reality, rather than performing KNN on pairs of movies at a time, a multidimensional

approach would be taken, comparing ratings of many movies at once.)

See also

Reference the scikit-learn documentation for supervised k-nearest neighbours classification by

searching online for scikit-leamn’s section 1.6.2 “Nearest Neighbors Classification” (https://scikit-

learn.org/stable/modules/neighbors.html#nearest-neighbors-classification).

s
s
s
s
s
s
s
s
n
n
n
s

M Decision trees
While KNN is considered a lazy learner (it does very little during the training phase and defers

most of the computation until prediction), decision trees are considered eager learners that

build a classification model during training.

Conceptually, you can think of decision trees as a large flowchart or series of nested if-

else statements that are used to determine classification. Rather than having to manually

determine the decision points and write programming code for the if-else statements yourself,

the algorithm will analyse the training data to automatically determine the cutoft values for

each decision point along the way, and how deep to make the nested tree.

Decision trees make for an easy-to-maintain algorithm since the model can be retrained and

its decision paths and threshold values subsequently adjusted based on new data. Decision-

tree algorithms are a scalable solution that works with large and complex data sets compared

to the impracticalities associated with maintaining if-else statements yourself that might have

hundreds or thousands of decision points and pathways, and therefore also be very much

prone to human error.

Iris flower data set

Setosa Versicolor Virginica

M Iris flowers

The iris data set is commonly used as an introduction to decision trees. It contains

measurements of 150 irises (a type of flower), one-third each of setosa, versicolor and

virginica. For each of the 150 measurements, there are four features (variables):

B sepal length in cm

B sepal width in cm

® petal length in cm

u petal width in em.

A4 Machine learning

One version of the final trained decision tree might look like this:

petal length (cm) <= 2.45

gini = 0.667

samples = 120

value = [40, 41, 39]

class = versicolor

/ N

I z
o
=
-

gini= 0.0 petal length (cm) <= 4.75

samples = 40 sa?:;l;n_jso

"acll';'::_[:gt'oi'am value = [0, 41, 39]
= class = versicolor

/ TR
petal width (cm) <= 1.65

gini = 0.053

samples = 37
value = [0, 36, 1]

class = versicolor

VAERN

petal width (cm) <= 1.75

gini = 0.206

samples = 43
value = [0, 5, 38]

class = virginica

ey
petal length (cm) <= 4.85 petal length (cm) <= 4.95

gini = 0.0

samples = 36

value = [0, 36, 0]

class = versicolor

gini = 0.0

samples = 1

value = [0, 0, 1]

class = virginica

gini=0.5

samples = 8

value = [0, 4, 4]

class = versicolor

N

gini = 0.056

samples = 35

value = [0, 1, 34]

class = virginica

L\ /
gini =0.0

samples = 2

value = [0, 2, 0]

class = versicolor

petal width (cm) <= 1.55

gini = 0.444

samples = 6

value = [0, 2, 4]

class = virginica

/
gini = 0.0

samples = 3

value = [0, 0, 3]
class = virginica

N
petal length (cm) <= 5.45

gini = 0.444

samples = 3
value = [0, 2, 1]

gini = 0.444

samples = 3

value = [0, 1, 2]

class = virginica

sepal width (cm) <= 3.1
gini = 0.0

samples = 32

value = [0, 0, 32]

class = virginica e
N\

gini = 0.0

samples = 2

value = [0, 0, 2]
class = virginica

gini = 0.0

samples = 1

value = [0, 1, 0]
class = versicolor

class = versicolor

VAN
gini =0.0 gini = 0.0

samples = 2 samples = 1

value = [0, 2, 0] value = [0, 0, 1]

class = versicolor class = virginica

M Trained decision tree for the iris data set

Starting at the top of the tree, observe the first decision is whether the petal length is <= 2.45 cm.

The other values printed in the node advise about the model’s prediction if there was no

further processing beyond this point. The significance of the terms used are:

B Gini indicates the decision tree would be 67 per cent uncertain in the prediction generated

(which makes sense as, without taking any branch in the tree, it will effectively be making

a 1-in-3 guess).

B Samples indicates that all 120 samples passed through this node (note it is 120 instead of

150 as, when this diagram was produced, 30 samples were retained as unseen for validation

testing purposes).

Ad .3 Machine learning approaches (HL)

A
T
N
O
 T
H

sklearn

sklearn

sklearn

® Value indicates the spread of the three classifications at this point (40 setosa, 41 versicolor

and 39 virginica).

m Class indicates that the prediction at this point would be versicolor (since it had the most

samples, with 41).

Based on the measurement of petal length, you either take the branch to the left, if the petal

length is <= 2.45 cm, or to the right, if the petal length is > 2.45 cm.

Keep traversing the tree until you reach a termination point, or you have gone as deep into

the tree as you would like and wish to terminate, obtaining the model's best prediction at

that point. (Keep in mind that, while the model represented here only has a maximum depth

of six levels, more complex decision trees can easily have maximum depths of hundreds or

thousands of layers, hence the option for stopping once a particular depth is reached.)

The following Python will implement the iris problem.

.datasets import load_iris

.model selection import train test split

.tree import DecisionTreeClassifier

import tree

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

Load the Iris data set

iris df = pd.read csvi('"iris.csv")

x = iris df.drop("species", axis=1) # features are all the columns except species

y = iris df["species"] # target variable

Split the data set into a training set and a test set

X train, x test, y train, y test = train test split(x, y, test size=0.2,

random state=42)

Create a decision tree and generate predictive data

clf = DecisionTreeClassifier (max depth=10, random state=42)

clf.fit(x train, y train)

y_pred = clf.predict(x_test)

Plot the decision tree

plt.figure(figsize=(12, 8))

tree.plot tree(clf, filled=True, feature names=iris.feature names,

iris.target names)

plt.show()

Validate accuracy using the test data

accuracy = clf.score(x test, y test)

print (f"Accuracy of the decision tree classifier is: {accuracy:.2f}")

Generate a prediction for a manual data point

new_flower measurements = np.array([[5.0, 3.5, 1.5, 0.2]])

predicted species = clf.predict (new flower measurements)

print (f"The predicted species for the new flower is: {predicted_species[o] '

class names=

A4 Machine learning

@ See also
The iris data set csv [lile can be downloaded from https://github.com/paulbaumgarten/hodder-

ibdp-computerscience

Reference the scikit-

learn documentation

for decision trees by

: One real-world application of decision trees is to assist with patient diagnosis. The features

:

searching online for 3

: :

kg =
o
Z
=< (variables) at issue in such a model may include demographic information (age, sex, height,

weight); clinical measurements (blood pressure, glucose levels, haemoglobin, cholesterol);

scikit-learn’s section lifestyle factors (such as smoking status and alcohol consumption); along with symptoms,

1.10 "Decision Trees”

(https://scikit-learn.

org/stable/modules/

tree.html).

conditions, medical history and test results. It is easy to envisage such a model having dozens

of features.

Thinking skills: Classification with KNN or decision trees?

Select a classification problem and perform a comparison analysis of both KNN

and decision trees to solve the problem. Evaluate the trade-offs between the two

approaches and create a decision matrix based on criteria such as ease of understanding,

computational efficiency, performance on small vs large data sets, and so on.

(;Top tip!

When choosing between k-nearest neighbours (KNN), decision trees and artificial neural networks

for a supervised learning classification scenario, consider the following:

M KNN suits moderate data sizes and low dimensions; decision trees handle mixed data sizes

well; neural networks excel with large, complex data sets.

B KNN requires normalization; decision trees need minimal preprocessing; neural networks

often require extensive preprocessing.

B KNN and decision trees are highly interpretable; neural networks are less so, and are often

considered "black boxes”.

m KNN are slow at prediction; decision trees offer fast predictions but can overfit easily; neural

networks require significant computational power but handle non-linear data well.

B KNN easily integrate new data; decision trees and neural networks most often require retraining.

A4.3.3 Supervised learning: evaluation and tuning

B Evaluation metrics

(®TokK
How can we know that current knowledge is an improvement upon past knowledge?

Machine learning requires evaluating the performance of new algorithms against benchmarks or

previous models.

In the context of machine learning, improvement is often quantified in terms of performance

on specific tasks. However, Theory of Knowledge invites you to question deeper aspects of this

improvement: Does performing better on a task, like object recognition, necessarily mean the

algorithm has gained more “knowledge”? Is the understanding deeper or merely more functional?

Additionally, metrics can sometimes be misleading. For example, an algorithm might score very

highly on accuracy but fail in particular scenarios that weren’t well represented in the training data.

Within supervised learning, there are several important, established metrics that can be used

to evaluate the effectiveness of your model.

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H
 # Confusion matrix: a

simple pictorial means of

representing how well a

machine learning model

is performing.

The starting point would typically be to produce a confusion matrix. For a binary classification

problem, the data forms a two-row, two-column table modelled as follows:

Predicted

Predicted positive Predicted negative

Actual Actually positive True positive False negative

Actually negative False positive True negative

The number of scores that are true positive, false negative, false positive or true negative are

written into the respective cell (and typically colour coded with dark shading to indicate

higher quantities), the idea being that it is a quick visual indicator of the success of your

model. If the highest numbers (and dark shading) run down the diagonal of true positive and

true negative, then that is a good sign.

A confusion matrix can also be produced for higher dimensional classification problems. In

that instance, each possible classification would be turned into rows and columns. In this case,

the diagonal set of cells from top left to bottom right would again represent correct predictions.

Using your confusion matrix, you can proceed to calculate the accuracy, precision, recall and

F1 scores.

B Accuracy: The fraction or ratio of correct predictions

accuracy = correct pret_iic‘tions

total predictions

B Precision: The fraction or ratio of correct positive predictions to total positive predictions

For instance, of all images recognized as being “cars”, how many of them were correctly

classified? Alternatively, of all the “spam” predictions, how many of those were correctly

“spam”? This is important when a false positive may have a significant consequence.

precision true positives

true positives + false positives

B Recall: The fraction or ratio of correct positive predictions to actual positives

For instance, this could be number of patients correctly predicted to have diabetes, out of

all the patients who truly have diabetes.

true positives
recall = — .

true positivies + false negatives

B F1 score: The harmonic-mean of precision and recall; it is particularly useful where both

false positives and false negatives may carry significant consequence

A harmonic-mean is different from an arithmetic mean in that it will always give a score

closer to the smaller of the two numbers. The F1 score will range from 0 to 1, with 1 being

the best score.

Fl score =2 » precision = recall

precision + recall

Consider using an F1 score in the criminal justice system, where an algorithm has been

devised to predict whether an individual will re-offend if released on parole. (Note that there

have been real-world problems in using machine learning modes for this exact scenario; refer

to A4.4 Erhical considerations for more.) In this situation, precision measures the correctness

of positive predictions. High precision means most individuals predicted to re-offend actually

did re-offend. Recall measures how well the model successfully identifies those who will re-

offend, so that re-offenders are not being ignored by the system. Both are important for matters

of public safety, so combining them through the use of the F1 score is valuable.

A4 Machine learning

#® Hyperparameter:

a parameter (or value

assigned to a variable)

that is set before the

learning process, which

quides the algorithm as

it learns.

(;Common

mistake

Avoid creating models

that are too complex

for your data; simpler

models are easier

to understand and

debug, and often

perform better on

new, unseen data.

Ad .3 Machine learning approaches (HL)

Another example scenario is to imagine a school using face recognition to automatically

record attendance as students walk through the school gate. In this scenario, high precision

implies that when the system identifies a student, it is identifying the correct student (rather

than recording the wrong student as present), and high recall suggests the system correctly

identifies most or all students who pass through the gate.

(‘Common mistake

It is common for students to over-rely on accuracy and neglect the nuance provided by the other

metrics. Have a clear understanding of the distinct roles of precision and recall.

B Accuracy is the overall correctness of the model (both true positives and true negatives).

B Precision is the proportion of positive identifications that were actually correct (important

when the cost of a false positive is high).

B Recall is the proportion of actual positives correctly identified (important when the cost of a

false negative is high).

B F1is the harmonicmean of precision and recall (useful when a balance between precision and

recall is needed).

[| Hyperparameter tuning

Hyperparameters is the technical term for the global variables thart attect the entire model.

Commonly used hyperparameters include:

learning rate (neural networks)

activation function (neural networks)

number of hidden layers (neural networks)

maximum depth of tree (decision trees)

number of neighbours (k-nearest neighbours)

number of clusters (unsupervised clustering)

other variables as required by the model.

Hyperparameter tuning is the process of experimentation and adjustment of the combination

of parameters that results in optimal performance of a model.

(.-Key information

Hyperparameters exist in all types of machine learning, not just in supervised learning. Take the time

to identify the hyperparameters in whatever algorithm you are using and the effect their adjustment

will have.

B Overfitting and underfitting
Overfitting occurs when the model effectively memorizes detail from the training data that is

too fine grained for it to make sufficient generalizations for use on unseen data. Reducing the

depth of a decision tree, increasing the regularization strength in a linear model or reducing

the number of neurons in hidden layers may help with this problem.

Underfitting occurs when the model is too simple and hasn't learned enough detail about the

underlying patterns involved, such that the model also performs poorly on unseen data.

Signs of overfitting include:

B the model performs significantly better on the training data compared to the validation data

B a complex architecture is used, with many features

= e
o
=
=<

A
T
N
O
 T
H

4 Clustering

techniques: where

data is grouped into

clusters based on

similarity or proximity to

each other without any

labels provided to help

indicate the correctness

of associating any

individual datapoint to

the cluster assigned.

® the training error rate decreases, but the testing error rate increases after a given number

of epochs

B reducing the model's complexity improves test performance.

Signs of underfitting include:

B the model performs poorly on both the training and test data sets

B asimple model is used, with minimal features

B there are insufficient fearures to adequately capture the characteristics of the data

u increasing complexity or adding features improves test performance.

A4.3.4 Unsupervised learning:
clustering techniques
To review, unsupervised learning is where the data set your model is trained on is unlabelled.

That is, you don’t supply the correct answer that corresponds with each datum you supply.

Rather than looking for data that is similar to known answer values, the features of the

unlabelled data are compared for similarities among them all, with the goal of identifying

naturally forming clusters in the groupings of data.

B K-means clustering
K-nearest neighbours is very commonly used for unsupervised clustering, in addition to the

supervised learning approaches already considered.

With the supervised approach, when a new, unlabelled data point is introduced, the algorithm

measures the distance (often Fuclidean) from the new point to all those in the training set.

From there, it identifies the nearest neighbours to assign a predictive label to the new value.

With the unsupervised approach, when a new data point is introduced, the algorithm similarly

measures distances to other data points to determine its nearest neighbours but, instead of

predicting a label, it uses these relationships to identify the groupings, or clusters, within the

entire data set.

The main weakness with a KNN approach is that it assumes clusters are spherical and of

similar size, making it sensitive to inirial centroids and outliers.

Grade boundaries using k-means clustering

£ 1
g8 ilKey N
] i | === Scores distribution

1

&6 [
— 1

o4 i
E Il

E27
z2, 1

0 20 40 60 80 100

M K-means clustering with one dimension

In this example, k-means clustering has been used to determine grade boundaries for a cohort

of 200 students. Asked to cluster the grades into six buckets, one for each letter grade, the

algorithm determined the following boundaries:

B A:8348to 100

B B: 7274108348

B C6445t072.74

m D:56.30 to 6445

®m [:47.09 to 56.30

m T:0to47.09

A4 Machine learning

Moving from one to two dimensions makes the identification of clusters more accurate. In this

instance, k-means could look like the following: =

o
Cluster of students based on study habits and test performance '2

100} =
Key [] ° 90|/ @Cluster 1 . !.":’0 “9.. °®
® Cluster 2 : LI - ... °® °

g @ Cluster 3 P PP [] @ P .‘
> 80 ® v .& .. 0

eIy U
o ®__ o [g 70 .: %0 oo "o it TP

2
‘g 0 '~ ° ® o ..

5 | sl on ®
& ., Ch ! a
50 ®

L
e o0 °*

40| o
T T T T T T T .

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Hours spent on homework per week

B K-means clustering with two dimensions

Health and lifestyle clusters While providing a 3D visualization in the 2D medium of a

Key textbook is problematic, hopefully the point still gets across

® Moderate with the following illustration that, as dimensions go up, so
® Low activity & poor sleep A . . .
® Active & healthy the identification of clusters becomes easier, given the data

points become further spread out. This works provided

l_g there is still enough data to form actual clusters, otherwise

£ the curse of dimensionality will soon kick in (as can be seen
[=

| g € inthe illustration; there are many cells with no value).

. E]
. . 7 =

@
a

-5

4 6 P
. s

10
Physical activity (hoursfweek) "

W K-means clustering with three dimensions

Python

Example implementation of k-means clustering

import numpy as np

from sklearn.cluster import KMeans

r

1
1
1
1
1
1
1
1
1
1
I # Generate synthetic data
1
L3

1
1
1
1
1
1

import matplotlib.pyplot as plt :
1
1
1
1
-

Ad .3 Machine learning approaches (HL) @

A
I
N
O
 T
H

np.random.seed (42)

Students who spend little time but perform variably

groupl = np.random.normal (loc=[5, 60], scale=[2, 10], size=(50, 2))

Students who spend a moderate amcunt of time and perform moderately

group2 = np.random.normal (loc=[10, 75], scale=[2, 5], size=(50, 2))

Students who spend a lot of time and perform well

group3 = np.random.normal (loc=[15, 90], scale=[2, 5], size=(50, 2))

Combine the groups into a single data set

data = np.vstack([groupl, group2, group3])

Apply k-means clustering

kmeans = KMeans(n_clusters=3, random state=42)

kmeans.fit (data)

labels = kmeans.labels_

Plot results

plt.figure(figsize=(10, 6))

colors = ["red", "green", "blue"]

for i in range(3):

plt.scatter(datal[labels == i, 0], datallabels == i, 1], color=colorsl[i],

label=f"Cluster {i+1}")

plt.title("Cluster of Students Based on Study Habits and Test Performance")

plt.xlabel ("Hours Spent on Homework per Week")

plt.ylabel ("Test Performance (%)")

plt.legend ()

plt.grid(True)

plt.show()

(‘Common mistake

Assuming clusters are globular; k-means does not work well with non-spherical clusters.

® See also

Reference the scikit-learn documentation for k-means clustering by searching online for scikit-

learn’s section 2.3.2 "K-means" (https://scikit-learn.org/stable/modules/clustering.html#k-means).
D LT T E R Ty s

s
s
s
s
s
s
n
n

100 B Spectral clustering
0.75- Spectral clustering is another technique that is useful

= 0.50- where clusters are not linearly separable. To classify any

,E 0.25 new data point, it will look at where the new point fits best

£ 0.00 among the groups already made, like finding which circle

-0.25- of friends a new student would fit into at school.

—0.50—

M Spectral clustering

A4 Machine learning

Python

import numpy as np

= 2y
o
=
-~ import matplotlib.pyplot as plt

from sklearn.datasets import make moons

from sklearn.neighbors import kneighbors_graph

from sklearn.cluster import SpectralClustering

Generate synthetic data (two interleaving half circles)

x, = make moons(n samples=300, noise=0.07, random state=42)

Create a k-nearest neighbours graph

knn graph = kneighbors graph(x, n neighbors=10, include self=False,

mode="distance")

Apply spectral clustering using the KNN graph

spectral = SpectralClustering(n clusters=2, affinity="precomputed",

assign labels="kmeans", random_gtate:42)

labels = spectral.fit predict (knn_graph)

Plot the results

plt.figure(figsize=(8, 4))

plt.scatter(x[:, 0], x[:, 1], c=labels, cmap=plt.cm.rainbow, edgecoclor="k", s=50)

plt.title("Spectral Clustering results")

plt.xlabel ("Feature 0")

plt.ylabel ("Feature 1")

plt.show ()

Social network analysis using spectral clustering Spectral clustering may be useful in contexts such as social

network analysis to identify communities within networks

by treating nodes as people and edges as their relationships.

@ See also
Reference the scikit-learn documentation for spectral

clustering by searching online for scikit-learn’s section

2.3.5 “Spectral clustering” (https://scikit-learn.org/stable/

modules/clustering.html#spectral-clustering).

s
s
s
s
s
s
s
s
s
s
s
s
a
s
a
n
n
s

B Hierarchical clustering
This approach builds a tree of clusters and doesn't require

the number of clusters to be specified in advance. It

provides a dendrogram (a tree-like diagram) to interpret

the data by viewing at different levels of granularity;
W Spectral clustering can group people according to social

networks
however, it is computationally intensive for large data sets.

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H
 Hierarchical clustering dendrogram Example applications include genealogy research to analyse

8- genetics to understand family relationships, and organizing

7+ library resources such as books and journals in a manner

° 61 that reflects similarity of content based on topics, themes or
g
£5 authors.
B4 . . T
a5, In this plot of a family tree, individuals from the same

2] family are grouped closer together first and, as you move

1- up the dendrogram, families start merging based on their

0- similarities (distances).
12 1013 11 14 7 8 6 5 9 4 1 2 0 3

Individual index

M Hierarchical clustering tree

@ See also :
} Reference the scikit-learn documentation for hierarchical clustering with a dendrogram by

: searching online for scikit-learn’s “Plot Hierarchical Clustering Dendrogram” (https://scikit-learn. -

: org/stable/auto_examples/cluster/plot_agglomerative_dendrogram.html). H

l DBSCAN clustering

(.-Key information

DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise.

DBSCAN: Identifying fraudulent transactions DBSCAN clustering will group together points that are

close to each other based on a distance measurement and

a minimum number of points. It is very effective for data

with clusters of similar density. Unlike k-means, DBSCAN

does not require the number of clusters to be specified. It

can find arbitrarily shaped clusters and can handle noise

and outliers.

m
e
 o
f
d
a
y
 (
st
an
da
rd
iz
ed
)

4 s ® An example application might be to detect frandulent
= .

T T 1 T T T
-2.5 0.0 2.5 5.0 7.5 10.0 125 150

Transaction amount (standardized)

financial transactions by clustering on similarities of

amount, location and time. DBSCAN can identify the dense

clusters that are “typical” and then separate out unusual
M Density-based spatial clustering

transactions for alerts.

R

@® See also

Reference the scikit-learn documentation for DBSCAN by searching online for scikit-learn’s

section 2.3.7 "DBSCAN" (https://scikit-learn.org/stable/modules/clustering.html#dbscan).
IOy

.

.
-
.
.
.
.
.

.

.

.

. # Association rule:

a process of finding

patterns of co-

occurrence in data; A4.3.5 Unsupervised learning: association rule
this means, given the
presence of one item in The association rule can be understood as a data mining technique that seeks to find co-

a record, how likely it is occurrences within a data set. It is another form of unsupervised learning. The technique

that another item will is commonly applied for market analysis, as well as crime analysis, healthcare, web / app
be present. behaviour tracking, and more.

A4 Machine learning

There are three key metrics associated with association rule learning:

B Support: The proportion of transactions that include a particular item or combination

of items.

e =
o
=
=<

m Confidence: The likelihood of occurrence of a particular item (B) when given some other

item (A).

m Lift: The degree to which two items will appear together in this model, compared to the

expected likelihood of them appearing together if the items were statistically independent;

a lift value greater than 1 indicates the presence of item A increases the likelihood of

B appearing.

The following example uses a data set of transactions from a fresh food market to find the

items that are frequently purchased together. You can download the data set from

https://github.com/paulbaumgarten/hodder-ibdp-computerscience

The first table, frequent itemsets, shows the support value for each set of items. In this case,

84 per cent of transactions include the sale of Milk. The association rules table illustrates the

association between the antecedent (prerequisite) item and the consequent (resulting) item. In

this case, the table shows:

B 62 per cent of rransactions involve both Milk and Bread

m there is a 73 per cent likelihood that the customer will also purchase Bread if they

purchase Milk

B the lift of 1.05 indicates that Bread is 1.05 times more likely to be purchased with Milk

than without it.

Freguent Itemsets:

support itemsets

0 0.84 (Milk)

1 0.70 (Bread)

2 0.60 (Butter)

3 0.60 (Egg)

4 0.54 (Cheese)

244 0.40 (Pasta, Butter, Bacon, Chicken)

245 0.40 (Apple, Banana, Coffee, Chicken)

2486 0.40 (Apple, Banana, Bacon, Coffee)

247 0.42 (Banana, Bacon, Coffee, Chicken)

248 0.40 (Pasta, Banana, Bacon, Chicken)

Association Rules:

antecedents consgeguents support confidence lift

0 (Milk) (Bread) 0.62 0.738095 1.054422

1 (Bread) (Milk) 0.62 0.885714 1.054422

2 (Butter) (Milk) 0.50 0.833333 0.992063

3 (Egg) (Milk) 0.50 0.833333 0.992063

4 (Cheese) (Milk) 0.50 0.925926 1.102293

821 (Pasta, Bacon) (Banana, Chicken) 0.40 0.833333 1.602564

822 (Pasta, Chicken) (Banana, Bacon) 0.40 0.740741 1.322751

823 {Banana, Bacon) (Pasta, Chicken) 0.40 0.714286 1.322751

824 (Banana, Chicken) (Pasta, Bacon) 0.40 0.769231 1.602564

825 (Bacon, Chicken) (Pasta, Banana) 0.40 0.714286 1.552795

Ad .3 Machine learning approaches (HL) @

A
I
N
O
 T
H

Python

Load data set

frequent itemsets

o

e

e

e
 e

import pandas as pd

from mlxtend.preprocessing import TransactionEncoder

from mlxtend.frequent patterns import apricri, asscciation rules

df = pd.read csv('"biased transactions.csv")

Generate frequent itemsets

Generate association rules

rules = association rules(frequent itemsets, metric="confidence", min threshold=0.7)

Display the results

print ("Frequent Itemsets:")

print (frequent itemsets)

print ("Association Rules:")

print{(rules|[["antecedents", "consequents", "support", "confidence", "lift"]])

= apriori(df, min support=0.4, use colnames=True)

This example uses an algorithm called Apriori in the m1xtend library for discovering the

frequent data sets. llere is a high-level overview of the Apriori algorithm:

B Determine a threshold for the minimum level of support that will be considered (40 per cent

in the code example above).

B Identify individual items in the data set that meet the threshold and store their

appearance count.

B Progress to identifying pairs of items and larger groupings of items in the data set that also

meet the minimum threshold.

m If aset of items does not meet the threshold at a small level, it can be removed from

further consideration.

B The result is all combinations of items that appear frequently together at or above the

minimum threshold.

D L T T T T

® See also

Reference the mlxtend documentation for assaciation rule processing by searching online for

mixtend documentation for association rule processing (https://rasbt.github.io/mixtend/user

guide/frequent_patterns/association_rules).
D L T T P Ty s

s
s
s
s
s
s
s
a
s
s
s
a
s
a
n
s

s
a
s
s
s
s
s
s
s
n
e
s

A4.3.6 Reinforcement learning
Previously, “reinforcement learning” was described as learning from trial and error. In that

vein, it can be likened to a toddler learning to walk. Every time the toddler falls over, they

learn a little more about how to correctly balance themself next time, until they eventually

become a stable and confident walker.

A4 Machine learning

| State & Reward |
[e =)

Environment

Actions
- — J

M Reinforcement learning flowchart

As with most machine learning algorithms, reinforcement learning introduces some new

terminology to consider:

B Agent: The machine learning model that makes the decisions on what to do.

B Environment: The world, as perceived by the agent.

B State: A snapshot in time of the world. State is the data that communicates the current

situation or the environment. Careful consideration of your state data is critical when

developing a reinforcement learning algorithm. What data will you provide to the agent to

help it learn the task you have for it? For instance, when training an agent to play a snake

game, do you give it values indicating the distance and bearing of the apple, or a pixel map

of the entire world?

B Action: An operation or behaviour that the agent can perform in the environment (for

example walk forward, turn left, turn right).

B Reward: An immediate return from the environment in response to the agent’s action.

Reward may be positive or negative (a punishment).

m Policies: The strategies the agent will use to map states to actions. Think of policies as the

agent's mental if-this-then-thart list.

The general process is as follows:

B The agent will typically begin with a randomized policy, as it has no existing knowledge of

the environment.

B The agent observes the environment. Based on what it perceives, and the policy it has

recorded so far, the agent chooses an action to perform.

The agent performs the selected action.

The environment updates to a new state.

The environment provides feedback via a reward to the agent.

The agent updates its policy based on the reward feedback received.

The process repeats.

Reintorcement learning usually involves a combination of exploration and exploitation.

“Exploration” is when the agent ignores its learned policy and tries something new.

Ad .3 Machine learning approaches (HL) @

e T
o
=
-

A
T
N
O
 T
H
 “Exploitation” is when the agent follows the learned policy and behaves according to what

it learned. Typically, an algorithm will start with a heavy emphasis on exploration, as the

algorithm hasn’t had much opportunity to learn anything yet. Over time, the hyperparameter

for the exploration / exploitation ratio, known as the “learning rate”, should adjust so as to

start deferring to the learned data more.

B Q-learning
The agent’s policies are responsible for maintaining what the agent has learned. While there

are a few approaches to this, one of the most common is known as “Q-learning”.

Q-learning can be thought of as using a 2D array or other data structure to create a giant

lookup table for every possible state and action combination. It stores a value for each possible

permutation of the two to predict what reward it would receive in each scenario.

Action 1 Action 2 Action 3 Action 4

State 1 —50 0 10 0

State 2 10 20 0 10

State 3 0 -10 0 50

The table illustrates a simplified version of a Q-learning 2D array. The data would suggest:

B When state 1 is seen, the best thing the agent can do is action 3, and it should avoid doing

action 1.

B When starte 2 is seen, the agent should do action 2, but action 1 and 4 would also give it

areward.

B When state 3 is seen, the agent should do action 4 for a large reward (possibly winning the

game), and avoid action 2.

A Q-learning table can be very large, given the array size is determined by all possible states

and all possible resulring acrions. When the data requirements are unfeasibly large, an

alternative approach is to use an artificial neural network to learn generalizations about the

state and resulting output actions. When a neural network is used, it is known as a “Deep

Q-Network™.

lere is a pseudocode overview of the process:

S =-

end while

end for

Initialize the Q-table with all zeros (or some initial values)

for each round:

Initialize the state S to the starting point of the game

while the episode is not finished:

Choose action A from state S using a policy derived from Q

Take action A

Observe the immediate reward R and the next state S

Update the Q-table value for the original state S and action A:

Q(s, A) <- Q(S, A) + alpha * (R + gamma *

Move to the next state

max(Q(s', all actions)) - Q(S, A))

A4 Machine learning

There are a few comments to note about this pseudocode:

B When choosing action A, take into consideration whether the algorithm should exploit its

QQ-table or explore other alternatives.

=L z
o
2
<

B Alpha here refers to the learning rate. A higher alpha means that newer information has a

greater impact on updating the Q-values, allowing the agent to adapt quickly to changes in

the environment. A lower alpha will cause slower updates, making the agent more stable

but also slower to learn. A starting value between 0.01 and 0.05 would be normal.

B Gamma here refers to the discount factor for how much future anticipated rewards should

be considered when making a decision. The ultimate goal of most scenarios is to find

an optimal policy that provides the maximum cumulative reward. A gamma value close

to 0 makes the agent “myopic” (short-sighted), heavily prioritizing immediate rewards.

Conversely, a gamma close to 1 encourages the agent to consider future rewards more

strongly, valuing them almost as much as immediate rewards. This makes the agent “far-

sighted”, planning over a longer horizon.

m This line in the pseudocode is known as the “Bellman equation™

Q(S, A) <- Q(S, A) + alpha * (R + gamma * max(Q(S', all actions))

- Q(s, A))

and it states that the Q-value for a state-action is equal to the immediate reward plus the

discounted value of the best action to take in the next state, adjusted for the learning rate.

B Example: Pong! game
The following example is a Pong!-style paddle-and-bouncing-ball game. It uses the pygame-ce

library for the graphics, and a numpy array for the Q-table. As can be seen in the results chart,

this agent requires about 20 minutes of training before it begins showing acceptable results.

Pong!: reinforcement learning results

1254

100+

75

50+

25

Ne
tt
 r
e
w
a
r
d

—25-4

—50+

T T T T T T T
0 500 1000 1500 2000 2500 3000 3500

Time (seconds)

M Pong! game M Pong! game: nett reward over time

Python

import pygame

import random

import numpy as np

import matplotlib.pyplot as plt

Constants

Ad .3 Machine learning approaches (HL) @

A
I
N
O

T
H

WIDTH, HEIGHT = 200, 400

FPS = 30

PADDLE WIDTH, PADDLE HEIGHT = 30, 15

BALL_RADIUS = 7

BALL COLOUR = (255, 255, 64)

PADDLE COLOUR = (255, 64, 255)

BACKGROUND COLOUR = (64, 64, 128)

Initialize Pygame

pygame.init ()

screen = pygame.display.set mode ((WIDTH, HEIGHT))

clock = pygame.time.Clock()

class Paddle:

def init_ (self, x, y):

self.rect = pygame.Rect(x, y, PADDLE WIDTH, PADDLE HEIGHT)

def move(self, x):

self .rect.x += X

self.rect.x = max(self.rect.x, 0)

self.rect.x = min(self.rect.x, WIDTH - PADDLE WIDTH)

def draw(self):

pygame.draw.rect (screen, PADDLE COLOUR, self.rect)

class Ball:

def init_ (self, x, vy):

self.rect = pygame.Rect(x, y, BALL RADIUS*2, BALL RADIUS*2)

self.dx

self.dy

def move (self):

random.choice([-4, 4])

random.choice ([-4, 4])

self.rect.x += self.dx

self.rect.y += self.dy

if self.rect.top <= 0 or self.rect.bottom >= HEIGHT:

self.dy = -self.dy

if self.rect.left <= 0 or self.rect.right >= WIDTH:

self.dx = -self.dx

def draw(self):

pygame.draw.ellipse (screen, BALL COLOUR, self.rect)

Game objects

paddle = Paddle (WIDTH//2 - PADDLE WIDTH//2, HEIGHT - PADDLE HEIGHT)

ball = Ball (WIDTH//2, HEIGHT//2)

QO-learning parameters

LEARNING RATE = 0.05

DISCOUNT FACTOR = 0.59

epsilon = 0.1

Let state have 10 positions for paddle and ball

(reduces demands on Q-Table)

def get_ state():

paddle mid = paddle.rect.x + PADDLE WIDTH // 2

ball mid = ball.rect.x + BALL RADIUS

return (paddle mid//20, ball mid//20)

A4 Machine learning

QO-table

10 possible paddle positions, 10 ball positions, 3 actions

= T
o
=
-

g table = np.zeros((10, 10, 3))

def update g table(state, action, next state, reward):

Bellman’s egquation

old value = g table([state[0], state[l], action]

next max = np.max(g table[next state[0], next state[1]])

new value = (1 - LEARNING RATE) * old value +

LEARNING RATE * (reward + DISCOUNT FACTOR * next max)

q_table[state[0], state[l], action] = new value

def choose acticn(state):

if random.random() < epsilon:

Explore: choose a random action

return random.randint (0, 2)

else:

Exploit: choose the best action from Q-table

return np.argmax(q table[state[0], state[1]])

def get_reward() :

if ball.rect.bottom »= HEIGHT:

if ball.rect.colliderect (paddle.rect) :

return 1 # Reward for hitting the ball

else:

return -1 # Penalty for missing the ball

return 0 # No reward or penalty

running = True

nett = 0 # nett reward

cumulative = [] # nett reward history for graphing

while running:

screen. fill (BACKGROUND COLOUR)

for event in pygame.event.get():

Use the quit icon for game termination

if event.type == pygame.QUIT:

running = False

Agent decides and acts

state = get state()

action = choose acticn(state)

if action == 1:

paddle.move (-10) # Move left

elif action == 2:

paddle.move (10) # Move right

Update game state

ball .mowve ()

paddle.draw()

ball.draw()

Check reward & state, update Q table

reward = get reward()

next state = get_state()

Ad .3 Machine learning approaches (HL)

A
I
N
O
 T
H

update g table(state, action, next state, reward)

if reward = 0:

PADDLE COLOUR = (0,255,0)

elif reward < 0:

PADDLE COLOUR = (255,0,0)

Update nett reward for graph

nett += reward

cumulative.append (nett)

Draw the game to screen

pygame.display.flip()

clock.tick (FPS)

pygame.quit ()

plt.plot(time,

plt.grid(True)

plt.show()

Graph results

4 Genetic algorithm:

imitates the concept of

survival of the fittest and

evolution by testing a

population of possible

solutions to a problem,

using properties from

the best-performing

solutions to create a

new population of

possible solutions, and

then repeating the

process until a suitably

performing solution has

been identified.

time = [i/FPS for i in range(len(cumulative))]

cumulative)

plt.title("Pong: Reinforcement learning results")

plt.xlabel ("Time (seconds)")

plt.ylabel ("Nett reward")

@® See also

A4.3.7 Genetic algorithms

Gymnasium is a popular library for learning about reinforcement learning. It provides a number

of pre-written environments that you can experiment with: https://gymnasium.farama.org
RO s

e
s
s
s
s
s
s
s
s
n
n
s

Genetic algorithms are not normally classified within the traditional categories of “supervised

learning”, “unsupervised learning” or “reinforcement learning”. They are considered an

evolutionary algorithm. They learn through a process of optimization inspired by the process

of narural selection.

A high-level overview of the algorithmic process is:

m Start with a population of possible solutions to the problem. This may be in the form of an

array of strings, for instance, where each string is a randomly generated possible solution.

B Each item within the population is evaluated through a fitness function that returns a metric

for how good the possible solution is.

W Fairs of solutions are selected for reproduction. Various algorithms will be discussed that

make these selections, but generally the better the fitmess function score, the more likely a

solution is to be selected.

B The selected pairs then undergo reproduction using a crossover algorithm, where part of

the genetic code of each parent is selected and then combined together to create a new

possible solution.

B The new offspring may then undergo mutation. Random number functions are generally

used so that only a small percentage of offspring undergo mutation, and then those selected

have parts of their genetic code (their “solution” to the problem) randomly altered.

A4 Machine learning

B Once a new generation of offspring has been generated, they become the current generation,

and the process of calculating fitness, selection, reproduction and mutation repeats itself.

B The process repeats until whatever termination criteria you determine is satisfied. This

I z
o
Z
=< might be to iterate for a given number of generations, or to iterate until a fitness score of a

minimum threshold has been reached.

Genertic algorithms are used for problems where it is not essential to identify the most perfect,

optimal solution, but where there is a degree of “close enough is good enough” flexibility.

Common example applications of genetic algorithms include:

B Route planning, such as the travelling salesperson problem. Consider the scenario of a

salesperson who has 50 cities to visit. Rather than crisscrossing the countryside, genetic

algorithms can find a close-to-optimal route to minimize the distance travelled. In the

context of a long journey to 50 cities, it is not necessary to find the most perfect solution,

so long as the solution is good enough. Put another way, if the algorithm can find a good

solution in a few minutes, is it really worth hours or days of additional processing to find a

solution that might be only 1 per cent better? At some point, the route is good enough to use.

B Timetabling, such as allocating students to their preferred classes where there are

constraints on the number of teachers, rooms and classes available.

m Civil and mechanical engineering to help optimize design of structures such as bridges or

buildings, and vehicle designs to make choices of materials based on durability, strength

and cost.

B Control systems and robotics use genetic algorithms to optimize the controller for better

stability and performance.

m Finance applications use genetic algorithms to help optimize a trade-off between risk and

reward in selection of an investment portfolio.

B Within machine learning, a genetic algorithm can help select a subser of relevant features

from a larger data set to improve model accuracy and reduce overfitting.

B Insome types of machine learning problems, it is possible to use genetic algorithms for

the training of an artificial neural nerwork as an alternative approach to backpropagation

(see later in this section).

B Selection functions
Selecting pairs of values for reproduction relies on the

wheel is rotatey

concept of weighted randomization. It is weighted in the

sense that those with higher fitness scores should be more

likely to be chosen for reproduction. Randomization is still

selection

point

the fittest individual

has the largest share

of the roulette wheel
the weakest individual

e has the smallest share
of the roulette wheel

M Roulette wheel selection

Ad .3 Machine learning approaches (HL)

important, however, to ensure that the algorithm doesn’t

become trapped in a local maximum.

One of the most commonly used approaches is the

concept of a roulette wheel, where the portion of the wheel

allocated is determined by the [itness function score.

A
T
N
O
 T
H
 H Crossover functions

Crossover functions define the algorithm used for reproduction — taking two input solutions

and mixing them in such a way as to produce a “child”, representing a new valid solution.

There are a variety of common algorithms to do this, but each needs to be considered in the

context of the problem. Any approach will likely need to be tweaked to ensure the “child”

created through the process is valid for the scenario.

ol1Tol1T11Tol1To o111 lolol1To Two common methods are the one-point crossover and the

two-p olnt crossover.

One-point crossover selects a random point in the gene

sequence to slice the data. The data from up until the slice

ol11ol111 0 ol1111111 point is copied from parent 1 into child 1, and then the rest

1]0/1]0 of child 1's data comes from parent 2. The inverse can also

occur at the same time to create a second child.

Two-point crossover works in a similar manner, except two

B One-point crossover slice points are selected.

There are other commonly used methods as well, but

0[1]0]1]1]1]0|1]0 0/1]1]1]1]0|0|1]0 what matters most is that you are using a randomization

function to create offspring that are a mix of the data from
A two paren[s‘

o[1o[7T1jolonl0l [O[1[1[1T1T1]o 110 (®Top tip!
Choose appropriate genetic operators (selection, crossover,

mutation) for your problem, and ensure diversity within the

population to avoid premature convergence.
M Two-point crossover

B Example: Travelling salesperson

Route travelled Route travelled

1000 1000

800 800

600 600

400 400

200 200

0 0
T T T T T T T T T T

0 200 400 600 800 1000 0 200 400 600 800 1000

M Travelling salesperson — random route M Travelling salesperson — optimized route

Consider the charts to represent a map of 50 cities that a travelling salesperson wishes to

visit, with two possible routes for the journey. Clearly, the randomized journey is inefficient,

whereas the optimized journey is a lot more efficient.

A4 Machine learning

Two questions to ponder: Is the optimized route perfect? And, does it matter?

To find the absolute most perfect solution would require testing 50! permutations; that is, over

30,000

permutations. That is a lot of processing! The reality is, in scenarios such as this, rather than

ze =
o
=
-

labouring for perfect, good enough will do. In the context of travelling berween 50 cities, does

it make sense to spend exponential time in calculations to save just a few minutes of travel?

This is an example of the type of problem that genetic algorithms can help solve.

Step 1: Create an initial population

Assign each city a number and use a random number generator to create a randomized route.

Do this for an initial population of 500 possible solutions (population size being one of the

hyperparameters you may want Lo tune).

Python

def create_random route():

route = [n for n in range(0,50)]

r b

1 1
1 1
| 1
1 1
1 1
I 1

: random.shuffle (route) :

: return route :

: def create initial population(): :

: return [create random route() for n in range (0, 500)] 1
— - 1

[Ll

Step 2: Create a fitness function to measure the performance of each
member of the population

The obvious metric is to use the journey distance of the route; however, given the crossover

function will give preference to those with a higher score for reproduction, it is necessary to

use a fitness function that gives the highest scores for those routes with lowest distances.

One simple solution might be to calculate the fitness score by setting the distance as a fraction

denominator, such as:

fitness, = —
distance,

An alternative approach used in the example code that follows is to use normalization to

convert the data into a [0,1] range, where the 0 represents the highest distance and the 1

represents the smallest distance. The resulting normalized values are then used as an exponent

to ensure that small differences in the normalized value, especially at the higher end, caused

very large differences in fitness.

. distance __— distance,
normalized = max f

i distance_— distance,
; = 100+normalized; fitness =2 i

The selection function is yet another hyperparameter for you to tune and experiment with for

each given problem. The method outlined here was only selected after experimenting with half

a dozen different possible approaches to see which produced the quickest results.

Ad .3 Machine learning approaches (HL) @

A
I
N
O
 T
H

Python

def calc distance(route):

def

dist = 0

for i in range(l, len(route)):

Get

xl,yl =

xX2,y2 =

dist += math.sgrt(abs(x1-x2)**2 + abs(yl-y2)**2)

Don't forget to return home at the end!

x1l,yl =

x2,v¥2 =

the co-ordinates for each pair of cities

coords [route[i-1]]

coords[route[i]]

coords|[route[len(route)-1]]

coords[routel[0]]

dist += math.sqgrt(abs(x1-x2)**2 + abs(yl-y2)**2)

return dist

calc fitness(distances):

max_distance

min distance

normalized =

fitness = np.

= np.max(distances)

= np.min(distances)

(max_distance-distances)/ (max_distance-min_distance)

power (2.0, (normalized*100))

return fitness

Step 3: Reproduction using a crossover method
In this case, the code below is using a modified form of one-point crossover. A point in the

data is randomly selected, and the genetic data from parent 1 is copied across without change.

After that, the remaining cities are copied over from parent 2 in the order in which they

appeared in parent 2.

Here is a simple example with six cities:

PARENT 1 [0,4,5,1,3,2]

PARENT 2 [4,2,0,3,5.1]

Randomly decide how many genes to copy from parent 1. In this case, use three.

CHILD =10,45 _,_, _1

Now copy the remaining values from parent 2, skipping the values already present from parent 1.

CHILD =10,4,52,3,1]

Python

def reproduce (parentl, parent2):

First set of genes will come from parent 1

count _of genes from parentl = random.randint (0, len(parentl))

child = parentl[0: count of genes from parentl]

Remaining genes will come from parent 2

for i in range (0, len(parent2)):

Only include genes from parent2 not already provided by parent 1

(don't want to visit the same city twice)

if parent2[i] not in child:

child.append(parent2[i])

return child

A4 Machine learning

Step 4: Mutation

There is no fixed algorithm to use for mutation; it will vary somewhat depending on the

context of your problem. In this case, the following code will, in 5 per cent of cases (the

I z
o
=
=< mutation rate hyperparameter), randomly pick a pair of cities in the route and swap them.

Python

def mutate(person, mutation rate):

if random.random() < mutation rate:

1
1
1
1
1
1

a = random.randint (0, len(person})-1) :

1
1
1
1
1
1
a

b = random.randint (0, len(person)-1)

personlal, person[b] = person[b], person[a]

return person

Step 5: Promote the children to be the active generation

This will be just a one-line task at the end of the loop to copy the data from the new generation

that was being produced, into the array being used for the active generation.

r b

1 1
' Python :

: # Move to the next generation :

I population = next generation 1
1 - 1
= Ll

Step 6: Write the main function to bring it all together

Python

import math, random, json

import numpy as np

with open("travelling-salesperson.json","r") as f:

coords = json.loads (f.read())

def travelling salesperson(population size=500, generations=5000):

Create randomized population

population = create_initial population(population size)

minimum = 50000

generation number = 0

while minimum > 5000 and generation number < generations:

Calculate fitness for each person

generation number += 1

distances = np.array([calc distance(population[n]) for n in range

(0, population size)]) N

fitness = calc_fitness(distances)

if generation number % 25 == 0:

print (f"Generation {generation number}: Best {calec distance

(population[np.argmax(fitness)])} Mean { distances.mean() }|")

Create the next generation

next generation = []

e e e e e e e e e e e e e e e e e e R M M e e e A A e e e e e e e e

Ad .3 Machine learning approaches (HL) @

A
I
N
O
 T
H

for p in range (0, populaticn size, 2):

Select parents

Select k=2 items from "population", using the values in "fitness"

to determine probability weighting.

parents = random.choices (population, weights=fitness, k=2)

Reproduce

childl = reproduce (parents[0], parents[1])

child2 = reproduce (parents[1], parents[0])

Mutate

childl = mutate(childl, 0.05)

child2 = mutate(child2, 0.05)

next generation.append(childl)

next_generation.append(child2)

Move to the next generation

population = next generation

All done. What are the results?

fitness = np.array([calc fitness(populaticn[n]) for n in range

(0, population size)])

best = np.argmax(fitness)

print (f"Best person after {generations} generations is #{best}")

print (£"Their travel distance: {calc distance (population[best])}")

print (f'"Their route: {population[best]}")

travelling salesperson()

Travelling salesperson As you let that execute, it will print an update every

25 generations with the progress it has made, similar to the

220001 following update:

20000 .
- Generation 25: Best 13496.55 Mean 14238.29
c

,,:Oj 18000 Generation 50: Best 11301.76 Mean 11541.97
@ —
g 16000 Generation 75: Best 9265.94 Mean $365.81

& 14000 Generation 100: Best 8944.63 Mean 9033.31
-
E 12000 Generation 125: Best 8727.39 Mean 8883.68

10000 This chart shows the minimum travel distance calculated

8000 "= after each generation when the algorithm was executed by

T T T T T T the author. There are a couple of important aspects to draw
0 1000 2000 3000 4000 5000 .

Generation your attention to.

M Best route found for travelling salesperson for each generation Firstly, and most obviously, is that most of the

improvement in output occurs very quickly, after which the

law of diminishing returns starts to apply.

The second thing to note, though, is that the output will frequently get stuck in a local

minimum for several hundred generations before suddenly breaking out of it, so there can be

benefits to gain by being patient enough to give that the opportunity to occur.

What is the lowest distance route you can obtain to visit all 50 cities?

Download the data file from https://github.com/paulbaumgarten/hodder-ibdp-computerscience

A4 Machine learning

ererceptron: thedata | A4.3.8 Artificial neural networks
structure at the heart r:E

of an artificial neural An artificial neural network (ANN}) is an algorithm thar learns to make decisions by finding g

network; it represents a patterns in data using an approach modelled on the biological brain. Just as a biological brain [
single artificial neuron

that takes in multiple

inputs and weights,
and generates an data between each other. These nodes are known as perceptrons, though they are also very

consists of many neurons that are interconnected and send signals to each other via synapses,

so too an artificial neural network is an algorithm that defines a series of nodes that transmit

output value. commonly referred to as “neurons”.

Input layer Hidden layer Output layer The diagram represents a typical structure for an ANN:

¢
Artificial neural networks B The output layer is where the ANN produces a final

® The input layer receives the input values that the

network is being asked to process. Each feature of your

model requires its own input perceptron. The value

given to each perceptron is numeric (either an integer

or float, depending on the problem context).

B There are usually one or more hidden layers within

an ANN. These are layers of perceptrons that identify

patterns in the input data to make generalizations useful

for the next layer. They receive the values from the

previous layer, perform their calculations and then send

their respective result to the next layer in the network.

M Layers in an artificial neural network “answer” value or prediction.

The illustration in this case is also an example of a fully connected network, in that every

perceptron from one layer is connected, and sends its output value to, every perceptron in the

next layer. Fully connected networks are the norm.

B A single perceptron
Zooming in on a single perceptron, the following sketch outlines the different elements

(Bias)

1

@%\
(Inputs) — @,,,WL,”' Yored

s w, (Activation function)

(Summation function)

at work:

(Weights)

B A perceptron in an artificial neural network

® Input: The perceptron receives an input value from every perceptron in the layer before.

B Weight: Every input has a weight associated with it. The weight is a value indicating the

importance this particular neuron places on the values from the respective input. Weights

are usnally initialized with a random number between —1.0 and 1.0 and then adjusted by

the training process.

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H
 Summation: The product of each input value and its respective weight are summed together.

Bias: Supplemental to weights, a typical neuron would also have a value called the “bias”.

This is added to the value from the summation step, prior to using activation. The bias acts

as a way to shift the decision boundary along the curve of the activation function. The bias

is usually initialized with a random number between —1.0 and 1.0 and then adjusted by the

training process.

Activation: The activation function helps determine whether or not the neuron should be

“active” (*inactive” in this case means the neuron would have an output value of 0). The

activation function serves to introduce nonlinearity to make neurons more expressive.

That is, it helps force the neuron to make a decision. For example, one commonly used

activation function is ReLU, which results in a neuron being active for any positive value,

and inactive (0) for any negative value. A comparison of common activation functions

follows later in this section.

Output: Finally, the resulting value returned from the activation tunction is sent onward to

the neurons in the next layer, or the external system.

The following example is a walkthrough of the calculations for a perceptron:

-3.1

1.6.
9.98 4.78—> 478>

2.9

2.7 Q9
P

W Example values in a perceptron

The perceptron receives input values of 1.3, 4.2, 0.0 and 2.7.

Each input path has a weight of 3.1, 1.6, 2.9 and 2.7 respectively.

Each input and its respective weight are multiplied, and the results added together:

(13+-31+#2=16)+(0.0=29) + (27« 27) =998

The bias value is added, which, for this example, is -5.2:

008 +(-5.2) =478

The resulting value is passed through the activation function, which, in this case, is ReLU:

RelLU(4.78) = 4.78

The output value 4.78 is passed along to the next layer in the network, or is given as the

output value of the network, if it is the output layer.

From a mathematical perspective, up until the activation function, the rest of the perceptron

can be considered a linear function, where the weights are the variable coefficients and the bias

is the constant:

¥ =RelLU(xw, +x,w,+x W, +xXW, +b)

Or, to express it more generally:

y = activation ((i‘,xiwi) + b)
i=0

A4 Machine learning

Given the output of any individual perceptron can be expressed as a function, and that the

inputs of perceptrons are either input values or the outputs of other perceptrons, it means that =

the entire artificial neural network behaves as a function. g

(- q

Activation function: ® Common mistake

a mathematical function Qvercomplicating the model architecture can lead to overfitting and high computational costs.

applied to the output of Start with a simple architecture and gradually increase complexity, if necessary.
a neuron that is used to

determine whether or

not the neuron should B Activation functions

be activated (considered While there are a large variety of activation functions in use, there are four that are more

to be "on”). common than all others: ReLU, Sigmoid, Softmax and tanh.

. RelLU function RelLU

ReLU (rectified linear unit) is often the default choice for

4-] ANNs. Tt is computationally efficient and is less likely

to have a vanishing (approaching zero) gradient, unlike

% 3 Sigmoid or tanh. The function for ReLU is:
3

‘32_ () = max (0,%)

3 On first impression, it may appear that ReLU is linear;

& however, it is more accurate to say it is two different lines

i coming together in the one function, one on the positive

0 side, and another on the negative. The simple act of the

zeroing of negative values significantly changes the

_A _'2 (') 2' a behaviour within a network as it means that only positive

Input value neurons will be activated and any negative-value neurons

M The ReLU function will be deactivated. This small change makes a big

difference when attempting to do classification problems.

194 Sigmoid function Sigmoid

Sigmoid is commonly used in the output layer for binary

109 classification problems since it maps to a distribution

= 0.8 between 0 and 1, which is generally what is desired at

“; the output layer. It is used in scenarios like email spam

‘g 0.6 detection (spam or not spam) and medical diagnosis (sick

2 0.4 or healthy). It is not usually used in hidden layers in deep

E networks due to their vanishing gradients. Observe that

@ 0.27 once the input value is less than —4 or greater than +4, the

0.0 gradient becomes so insignificant it might as well be zero.

The equation for Sigmoid is:
-0.2 | T T

1 -4 -2 0 2 4 -
Input value (x) j(x) T leer

M The Sigmoid function

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H

e

e

e

=

2
7

=
©

1

Pr
ob
ab
il
it
y

e

]
 |

0.0

Softmax probabilities for varying logits of Class 1

Key

~— Class 1 probability

—— Class 2 probability

— Class 3 probability

~— Class 4 probability
~— Class 5 probability

~— Class 6 probability

~ Class 7 probability

~—— Class 8 probability

~ Class 9 probability

~ Class 10 probability

S 7 e .~ L R
T T T 1 1 1

-10.0 -75 5.0 -25 0.0 25
Logit for Class 1

M The Softmax function

1.5

T
a
n
h
 o
u
t
p
u
t
 (
y)

o

o

1

| L

o

|

| N

5

Tanh function

Input value (x)

M The tanh function

Softmax

Softmax produces an output similar to Sigmoid in that

both produce values in the range (0,1). Softmax produces

a probability distribution for N different outcomes,

where N is the number of categories for classification

and the probabilities sum to 1. This makes it suitable for

distribution across multiple classes, so it is commonly used

for the output layer of a multiclass classification problem.

(In the chart, the lines for Classes 2 to 10 are aligned and

stacked one on the other, which is why it appears as if only

two lines are plotted.)

Tanh

Tanh is similar to Sigmoid, but the output values range

between —1.0 and 1.0. It is useful when your data is

normalized around 0 but, like Sigmoid, it also has

vanishing gradients that can be problematic. It is more

common to see tanh used for hidden layers than Sigmoid,

given its mean distribution is centred on 0. This centring

around 0 makes learning for the next layer easier for

classification.

There are a couple of mathematically equivalent ways of

producing the tanh function:

(e —-e™
fo = (e*+e™)

or

2

0= e !

B Generating a prediction
Using an ANN to generate a result is a matter of performing all the calculations on all the

perceptrons in one layer, and then feeding forward those results to the next layer. The process

continues until the output layer is reached and the process terminates.

While overengineered for the scenario, imagine using a neural network to determine the result

of OR and AND logic gates. Consider the following network with two input neurons, four

neurons in one hidden layer and two output neurons.

After training (discussed in the next section), the network consists of the following weights

and biases. The ReLU activation function is used on the hidden layer and, since the network is

seeking to perform a classification task, Sigmoid is used on the outpur layer.

A4 Machine learning

OR

' bias 0.2
AND

bias -0.84

bias -0.23

W Example values for a logic gate ANN

For those unfamiliar with logic gates, see Section A1.2.3. The network should produce the

following results, if behaving correctly:

A B OR AND

[0, O] -> [0, 0]

[0, 1] -> [1, 0]

[1, o] -> [1, o]

[1, 1] -> [1, 1]

Performing the calculations for an input of [1, 01, the following occurs:

Hiddenl = ReLU(1.00 * 0.60 + 0.00 * -1.13 + 0.53) = ReLU(1.13) = 1.13

Hidden2 = ReLU(1.00 * -0.47 + 0.00 * -1.11 + 0.00) = ReLU(-0.47) = 0.00

Hidden3 = ReLU(1.00 * 0.70 + 0.00 * 2.10 + 0.00) = ReLU(0.70) = 0.70

Hidden4 = ReLU(1.00 * 2.10 + 0.00 * 0.80 - 0.23) ReLU(1.87) = 1.87

Now, use these hidden layer values to generate the output values.

Qutl Sigmoid(1.13%-0.25 + 0.00%0.94 + 0.70*%1.73 + 1.87*0.71 - 0.26)

= Sigmoid(2.00)

= 0.88

Out2 = Sigmoid(1.13*-1.48 + 0.00*-0.69 + 0.70*%-0.13 + 1.87*0.77 - 0.84)

= Sigmoid(-1.16)

0.24

Since our classification problem is seeking a 0 (“false” or “no”) or 1 (“true” or “yes”) answer,

when 0.88 and 0.24 are rounded, the network has indeed correctly determined that an input of

[1,0] into an OR gate results in a 1, and [1,0] into an AND gate results in a 0.

@ See also

: See 3BluelBrown's YouTube video “But what is a neural network?”
.
R P T T Ty

Ad .3 Machine learning approaches (HL) @

25 =
o
Z
=<

A
T
N
O
 T
H

Backpropagation:

backpropagation of

errors is the most

commonly used

technigue for training

artificial neural

networks. The gradient

of the loss function is

calculated, and used

to update parameters

such as weights, in the

opposite direction of the

gradient to reduce the

overall error.

B Training
While calculating an output result or prediction from a neural network should be a

conceptually straightforward mathematical process, the training process is more complex and

is far beyond the scope of your course.

The process used is known as backpropagation. As a high-level overview, here is what

is occurring:

B We calculate the error in the output values received from the network when compared to

the target output values in the training data. A loss function is used for this, such as “mean-

squared-error” for regression, or “cross-entropy loss” for classification tasks.

B We calculate how much each parameter (the weights and biases) in the network

contributed to the error. This is done by using the gradient (i.e. the derivative or slope) of

the loss function for each parameter.

B An optimization algorithm such as “gradient-descent” is used to calculate adjustments to

the parameters. By knowing the gradient of the error, the parameters can be adjusted in the

opposite direction (gradient descent) to reduce the loss (see the videos referenced in the

“See also” box).

® Before applying the adjustment to the weights and biases, we multiply them by the learning

rate hyperparameter. This is to ensure we don't overcorrect and solely design the network

around any one particular value in the training data set.

B Once this process has completed for one layer (such as using the output layer to calculate

adjustments to the last hidden layer), we repeat the process on the layers before it. This

process of moving backwards from the output layer, working through each hidden layer,

until finally reaching the input layer, is where the term “backpropagation” comes from.

B We repeat the entire process a certain number of iterations or until the loss stops

decreasing significantly. Each pass over the data set is known as an “epoch™

R LR R T T e P R E R

® See also

See 3BluelBrown'’s YouTube videos “Backpropagation, step-by-step | DL3" and “Gradient

descent, how neural networks learn”.
D LT T P PP s

s
s
s
s
s
s
a
n
s
s
a
n
s

s
s
s
s
s
s
a
n
s

B Example 1: Logic gates
This is the Python code used for the OR and AND logic gates example in the

previous walkthroughs.

e e e e e il L |

E Python
E

: import tensorflow as tf :

I from tensorflow.keras.models import Sequential 1

: from tensorflow.keras.layers import Dense :

: import numpy as np :

: # Inputs: [A, B] :

: %x = np.array([[0o, 0], [0, 11, [1, 0], [1, 111, dtype=float) :

: # Outputs: [OR, AND] :

: y = np.array([[0o, 0], [1, O], [1, 0], [1, 1]1], dtype=float) :

o o o o e e e e e e e e e e R e e e R e e e e e e R e e e e R e e R e e e e R e R e e e R e e e e e e e e e e e e e e e e e o

A4 Machine learning

Define and compile the model

model = Sequential ([

= = -
o
Z
-

Hidden layer with 4 neurons, using RelLU

Dense (4, input dim=2, activation="relu"),

Output layer with 2 neurons, using Sigmoid

Dense (2, activation="sigmoid")

1)

model.compile (loss="binary crossentropy", optimizer="adam", metrics=["accuracy"])

model . fit(x, y, epochs=1000, verbose=1)

Making predictions

predictions = model.predict (x)

print ("Predicted ocutputs:\n", predictions)

Evaluate the model

loss, accuracy = model.evaluate(x, y)

print ("Accuracy: {:.2f}".format (accuracy))

Print weights and biases for our curiosity

for layer number, layer in enumerate (model.layers) :

weights, biases = layer.get weights()

print (f"Layer {layer number+1}")

print ("Weights:\n", weights)

print ("Bizses:\n", biases)

print ("\n")

e e e R e o

(® Common mistake
If you are installing TensorFlow on a computer without a GPU, ensure you install a CPU-only version

otherwise you will receive errors that pip is unable to find a version that satisfies the requirements.

That is, from your terminal, run the following:

pip install tensorflow-cpu

For more detailed instructions, refer to the TensorFlow installation guide at

www.tensorflow.org/install/pip

H Example 2: ANN for regression
A commonly used example for introducing regression problems with an ANN is the California

housing data set. It contains information about various homes in Calitornia in the 1990s,

including such features as house age, average number of rooms, average number of residents,

and latitude and longitude, and is used to predict house prices.

More information on the data set can be found by searching online for Keras California

Housing price regression data set (https://keras.io/api/datasets/california_housing).

Python

import tensorflow as tf

from tensorflow.keras import layers, models

from sklearn.model selection import train test split

1
1
1
1
1
1
1
1
1
I import numpy as np
1

Ad .3 Machine learning approaches (HL) @

A
I
N
O

T
H

Load data set

(x, ¥), (x test, y test) = tf.keras.datasets.california housing.load data(

version="large", path="california housing.npz", test split=0.2, seed=113

)

Split the data into training and validation sets

x train is the training data, y train is the training labels

x val is the validation data, y val is the validation labels

X _train, x val, y train, y val = train test splitix, vy, test size=0.2,

r;ndomistagezo) B B - B B

Define the network, compile, and train it

medel = models.Sequential ([

layers.Dense (64, activation="relu", input shape=(x_train.shape[1],)),

layers.Dense (64, activation="relu"),

layers.Dense (1)

1)

mcedel .compile (optimizer="adam",

loss="mse",

metrics=["mae"])

history = medel.fit(x train, y train,

epochs=100,

validation data=(x_val, y wval))

Run the unseen test data through the network to determine success

test loss, test mae = model.evaluate(x test, y test)

print (f"Test data - mean-absclute-error: {test mae}")

S IR B e B Example 3: ANN for classification
AL I L A A very common Hello World-style classification problem for ANNs

2 2) a2 20 0 is the MNIST number recognition data set. It comprises 60,000

F 3 2 33 7523 3 4 3 28x28 grayscale images of the ten digits, along with a test set of

¢ 4 4 ¥ N 4 4 v 4 4 10,000 images.

5 §F &£ 5 5 5§ 5§55

G 6 L 6 6 b & ¢ ¢ ¢

77 77r?r7 2 777?

§ # r * B 8 ¢ ¢+ 8 ¢

9 ¢ 729 % 279 9729

M Examples of handwritten digits in the MNIST data set

Python

import tensorflow as tf

from tensorflow.keras import layers, models

from tensorflow.keras.utils import to_categorical

import matplotlib.pyplot as plt

import numpy as np

Load data set

(x_train, y train), (x test, y test) = tf.keras.datasets.mnist.load dataf()

A4 Machine learning

Convert grayscale pixels into floats with range [0...1]

x_train = x_train/255.0

x test = x test/255.0

= = -
o
Z
-

Convert the labels into "1 hot encoding" category arrays

e.g. label of 3 becomes [0,0,0,1,0,0,0,0,0,0]

y_train = to_categorical (y_train)

y test = to categorical(y test)

Define the network, compile, and train it

model = models.Sequential ([

layers.Flatten(input shape=(28,28)),

layers.Dense (64, activation="relu", input shape=(x train.shapell],)),

layers.Dense (10, activation="sigmoid")

1)

model.compile (optimizer="adam",

loss="binary crossentropy",

metrics=["accuracy"])

history = model.fit(x_train, y_train, epochs=5)

Run the unseen test data through the network to determine success

loss, accuracy = model.evaluate(x test, y_test)

print (f"Accuracy: {accuracy}")

1
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

layers.Dense (64, activation="relu"), :

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

model .save("mnist-example.keras") :

- P

R

R

R
R

R
R

R
R
M

A

o
y

One step that may not be intuitively obvious is how to test this with your own dara. Suppose

you have a 28x28 grayscale PNG file youd like to test on the ANN. The following is example

code to do this task. (By the way, ensure your image is white text on black background, as that is

how the model has been trained.)

Python

import numpy as np

from PIL import Image # pip install Pillow

import tensorflow as tf

model = tf.keras.models.load model ("mnist-example.keras")

Load the image file

image = Image.open("your image file.png")

image = image.convert("L") # Grayscale to match the training data

= image.resize((28, 28)) # Resize to match the training data

r

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
: image

1 # Convert image to numpy array
1
I image array = np.array(image)

: image array = image array/255.0 # Normalize to 0..1 scale

: # Reshape the array for the model (Add a batch dimension at the beginning)

: image array = image array.reshape(l, 28, 28)

| # Send to the trained ANN

: predictions = model.predict(image_array)

: predicted class = np.argmax(predictions, axis=1)

1
1

-

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

print ("Predicted class:", predicted class) 1
- 1

Ad .3 Machine learning approaches (HL) @

A
T
N
O
 T
H

Convolution: a

mathematical operation

that combines two

functions to produce

a third function.

In the context of a

convolutional neural

network being used

for image processing,

convolution applies

filtering functions to the

pixels in an input image

to compute distinctive

features from the data.

A4.3.9 Convolutional neural networks

A convolutional neural network (CNN) extends on the architecture of ANNs by using

additional layers of calculations prior to processing the data through a fully connected

artificial neural network.

CNNs are ideally suited to processing image data but are also valuable for applications such

as video analysis, natural language processing (NLP), audio and speech processing, and

recommendation systems.

To explore what makes a CNN different from an ANN, consider the following diagram of a

typical convolutional neural network:

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

M Structure of a convolutional neural network

B Input layer
The input layer comprises the raw pixel data of the image being processed. The number of

input nodes would be based upon image width x image height x colour depth.

It is important to consider that, when dealing with input data such as images, the input data

can get very large with relative ease. A small image of only 100 x 100 pixels at full colour

resolution (that is, 1 byte each for red, green and blue) would comprise 300,000 values. This is

too much to feed directly into an ANN, and so preprocessing through convolution and pooling

is used to reduce this to something more manageable.

B Convolutional layer
The convolutional layers serve as [eature extractors that are looking for patterns in the

input image.

As the network trains, it develops filters (also known as “kernels”) that learn to detect

patterns that are important for the individual network at hand. Generally, these patterns are

as simple as edge detection or various textures, but they can be used to detect more complex

shapes within the image. Other common patterns that may emerge are sharpening filters and

blur filters.

Edge detection will typically look for vertical or horizontal edges. For instance, the matrix to

find vertical edges may look like this:

-1 0 1
-1 0 1
-1 0 1

Applying an edge detection filter to an image is shown in the following diagram. The first

image is the original; the second is the output using vertical edge detection with the matrix

above; the third is horizontal edge detection after rotating the matrix clockwise.

A4 Machine learning

Ad .3 Machine learning approaches (HL)

M Kitten bitmap with its horizontal edges and vertical edges detected

A sharpening filter will emphasize the difference in contrast between adjacent pixel values.

This helps make the image look more distinct to later stages of the network. The matrix for a

sharpening filter may look like this:

0 -1 0
-1 5 -1
0 -1 0

A blur filter will help reduce noise and detail from an image, so the network doesn't focus on

minor variations of detail within the image that do not carry significance in meaning. For

instance, a gaussian blur may be applied through the following matrix:

"1/16 1/8 yfl
8 14 18
/16 1/8 1/16

The strength of CNNs lies in their ability to learn the most appropriate filters for a given task

through backpropagation during the training process. The initial values for these kernels can

be set randomly, or by using some heuristic, and then be updated to better suit the specific

features of the training data.

The act of iterating over groups of pixels with a filter is known as “sliding” or “striding”.

@ See also
-

§ See 3BluelBrown's YouTube video “But what is a convolution?”

H Activation function
Convolutional operations are linear transformations. Mathematically, they are the dot product

between the filter (kernel) values and the pixel values in the image. If you stack multiple

convolutional layers, the entire network can still be described as a single linear transtormation.

No matter how many layers you have, they can still be collapsed into a single layer that

performs one linear transformation, because the composition of two linear functions is still

a linear function (the function for any one pixel can be reduced to the sum of input values

multiplied by various fixed coefficients).

This poses a problem for our network, as a linear system can only perform linear classification.

That is, it can only separate data using a straight line (or hyperplane in higher dimensions).

‘While this has its uses, the tasks we generally require of CNNs are too complex for a linear

approach to separation.

= = L
[}
E
-

A
T
N
O
 T
H
 Therefore, after convolution, the data is run through an activation function to introduce non-

linearity to the data.

Bl Pooling layer
The next stage of the process is to pass the data through some down-sampling layers, also

known as “pooling layers”. The pooling layers serve to reduce the dimensions of the image data.

This serves a couple of important purposes. Firstly, it will reduce the number of parameters

that need to be input into a deeply connected network, significantly reducing the

computational workload of the network. Secondly, it also assists with network learning, as it

will further help negate minor changes in individual pixels (image noise) that are unlikely to

be relevant to image classification. This helps to reduce the risk of overfitring.

There are two commonly used methods of pooling:

B Max pooling, which takes the maximum value from a set of values.

B Average pooling, which takes the average value from the set of values.

B Fully connected layer
After pooling, the data is then fed into a fully connected artificial neural network (ANN),

which has been previously discussed.

The purpose of the ANN at this point is to take the high-level features learned by the

convolutional and pooling layers and use them to perform the final classification or

regression task.

Before entering the first fully connected layer, the feature maps will typically be flattened

into a one-dimensional vector of values, which will align with the number of input nodes of

the ANN.

H Output layer
The output layer from the CNN is the output that comes from the fully connected layers of

the ANN.

(;Top tip!

Don't neglect transfer learning to leverage pre-trained models. This is especially useful if you have

limited training data available.

B Explore some of the pre-trained models available through TensorFlow or PyTorch, such as

VGG, ResNet and Inception.

m Consider the similarity between the data the model was originally trained on, and your

target data.

B Decide whether you will be using transfer learning to assist with feature extraction or fine-

tuning. Feature extraction will use the previous network to extract meaningful features from

new samples. In this case, freeze the convolutional base and only train a new classifier layer.

Fine-tuning doesn't freeze the convolutional base. After adding your new output layer, it will

fine-tune the weights of the pre-trained model by continuing the training process, allowing it

to learn new task-specific features.

B Remember to preprocess data in the same way the original model was trained, and to use

data augmentation techniques (like rotation, scaling, cropping and flipping) to artificially

expand the training data set.

A4 Machine learning

B Example: CIFAR-10
The CIFAR-10 data set contains 50,000 images of 32x32 pixels in RGB colour, plus another

10,000 test images. The images are labelled over ten categories: airplane, automobile, bird, cat,

25 =
o
Z
=< deer, dog, frog, horse, ship, truck.

The additional complexity of shapes, slightly enlarged size and the inclusion of three colour

channels rather than just grayscale make CIFAR a good platform for experimenting with

a CNN.

More information about the data set can be found by searching online for Keras CIFARI0 small

images classification data set (https:/keras.io/api/datasets/cifar10).

(®Tok
Is it acceptable to benefit from knowledge derived from unethical sources?

CIFAR-10 is a data set that was compiled by Alex Krizhevsky in 2009. It was created as a subset of a

larger data set of 80 million images known as Tiny Images.

In June 2020, the decision was made to withdraw the Tiny Images data set and request others to

stop using it ,due to “biases, offensive and prejudicial images, and derogatory terminology” within

the data set.

CIFAR-10 remains available and is commonly used by many academic institutions. Students use it to

learn how to train neural networks for computer vision tasks.

Given its origins from the ethically compromised Tiny Images data set, should CIFAR-10 still be used

in scientific research and technological development?

(®Tok
Is it ethical to use data scraping for creating data sets without the consent of the

content owners?

Web scraping is a prevalent tool used to gather vast amounts of data from across the internet.

Typically, this occurs without the explicit consent of the owners or creators of the data.

Web scraping is fundamental to the data sets used for many machine learning models, including

computer vision and large language models.

Courts and governments are grappling with the complex ethical issues around this practice, and

no clear resolution is in sight. There are vast economic and commercial interests on both sides of

the debate.

Some questions include:

B Who owns the information available on the internet, especially on forums such as Reddit, or

collaborative efforts such as Wikipedia?

B Is it ethical to use this data for academic purposes? What about for commercial purposes?

B s it an invasion of privacy to use photos and videos uploaded to social media to form data sets

for machine learning purposes?

B Isit too late? Is it time to focus on harm mitigation? Are there ways to share profits, such as

through royalty payments?

Ad .3 Machine learning approaches (HL) @

A
I
N
O
 T
H

PYTHON

import numpy a

(train images,

train images =

test images =

1)

(‘ Top tip!

Start simple! Begin

with simple models to

establish a baseline,

and gradually move

to more complex

algorithms. Appreciate

the power of simple

maodels; sometimes

they are all you need.

from tensorflow.keras.datasets import cifarl0

from tensorflow.keras import layers, models

s np

Load the CIFAR-10 data set

train labels), (test images, test labels) = cifarl0.lcad dataf()

Normalize the data to 0-1 ranges

train images/255.0

test_images/255.0

Define the CNN model

model = models.Sequential ([# 32 x 32 pixels, 3 colours

layers.Conv2D (32, (3, 3), activation="relu", input shape=(32, 32, 3)),

layers.MaxPooling2D((2, 2)),

layers.Conv2D (64, (3, 3}, activation="relu"},

layers.MaxPooling2D((2, 2}),

layers.Conv2D (64, (3, 3}, activation="relu")},

layers.Flatten(),

layers.Dense (64, activation="relu"),

layers.Dense (10, activation="softmax")

Compile and train the model

model .compile (optimizer="adam", loss='"sparse categorical crossentropy",

metrics=["accuracy"]) N N

history = model.fit(train images, train_labels, epochs=10, validation split=0.1)

Evaluate the model

test loss, test acc

print ("Test accuracy:", test_acc)

= model.evaluate (test images, test labels)

A4.3.10 Model selection
You have looked at a lot of machine learning algorithms in this chapter. When the time comes

to use machine learning to solve your own problems, how do you decide which model to use?

Here are some criteria to assist in your decision-making process:

Classification or regression? Does the problem require predicting a continuous output

(regression) or categorizing data into predefined classes (classification)?

Linear or non-linear relationship? Linear regression 1s quick and simple to implement, but

will not work with complex non-linear data, in which case a neural network may be required.

Low or high dimensionality? How many features do you need your algorithm to process?

Volume of data? Deep learning requires a large amount of data to work accurately and to

avoid overfitting. Decision trees or k-nearest neighbours may be better suited if the data set

is small.

Feature independence? If features (variables) interact with each other (such as co-dependency),

the complex interplay may be better captured by a decision tree or neural network.

Accuracy? If highly accurate predictions are required, then more complex models may be the

better option, but this comes at the cost of requiring more data and computational power.

A4 Machine learning

Thinking skills: As

a class, brainstorm

a set of case-study

scenarios where

machine learning

may be beneficial.

Training time? Linear regression and shallow decision trees can be trained very quickly,

relative to deep neural networks.

Transparency? Sometimes the “magic-happens-here” approach of neural networks may be

intimidating and undesired by the client. Some domains, such as healthcare or finance,

may require models that can be user-interpreted, in which case linear regression or

decision trees may be best.

Resources available? Deep neural networks require significant GPU computational power

7 -
o
=
-

Debate and discuss

what the appropriate

machine learning

algorithm would

be (for example

linear regression,

clustering,

association

rules) based on

the problem

statement and data

characteristics.

to train. If all you have is a consumer-grade laptop, a simpler approach may be required.

(;Key information

Remember that, as far as the syllabus is concerned, Machine Leamning is a theory unit rather than

a programming one. The following exercises are optional suggestions for students who wish to

explore machine learning programming for themselves.

1 Height and weight (linear regression)

Given the height of a person, can you predict their weight?

Data set @ www.kaggle.com/datasets/galserge/weight-and-height-from-nhanes

2 Vide ogame sales with ratings (linear regression)

Given the ratings assigned by critics reviewing a new Video game, can you predict how many

millions of units a Video game will sell?

Data set @ www.kaggle.com/datasets/rush4ratio/video-game-sales-with-ratings

3 Societal impact on education (linear regression)

How much is a student’s educational outcome influenced by the strength of the economy

and health of the saciety in which they reside?

Data set @ www.kaggle.com/datasets/walassetomaz/pisa-results-2000-2022-economics-

and-education

4 Zoo animal classification (k-nearest neighbours)

Classify animals into categories, such as mammal, bird or reptile, based on attributes such as

weight, height and type of habitat.

Data set @ www.kaggle.com/datasets/uciml/zoo-animal-classification

5 Mall customer segmentation (unsupervised k-means clustering)

Use k-means clustering to identify distinct customer groups, such as high-income-high-

spending vs low-income-high frequency customers.

Data set @ www.kaggle.com/datasets/vjchoudhary7/customer-segmentation-tutorial-in-

python

6 Social network analysis (unsupervised spectral clustering)

Discover socially connected communities within the Zachary karate club data set. One

challenge often asked with this data set is to find the two groups of people into which the

karate club split after an argument between two of the teachers.

Search "Zachary karate club” to find this data set.

7 (Unsupervised association rule learning)

Analyse the grocery-store data set to discover common product combinations

purchased together.

Data set @ https://archive.ics.uci.edu/dataset/611

Ad .3 Machine learning approaches (HL)

8

10

1"

12

13

(Reinforcement learning)

The previously mentioned Gymnasium has a number of pre-built environments for you to

experiment with.

Download @ https://gymnasium.farama.org

Optimal stock portfolio (genetic algorithm)

Use a genetic algorithm to determine what would be the optimal mix of stocks to hold over

the duration of a data set to maximize return while minimizing risk. The fitness function could

be based on the Sharpe ratio, a measure of return adjusted for risk.

Download historical price data for a set of assets (for example stocks, bonds, ETFs) and

calculate returns for each asset to use in the optimization.

Data set @ www.kaggle.com/datasets/jacksoncrow/stock-market-dataset

Data set 2 @ www.nasdaq.com/market-activity/quotes/historical

Stock-price prediction (artificial neural network)

Can you create an Al to accurately predict the performance of stock prices? (If you can, don't

forget to express your appreciation benevolently to the textbook authors &)

Data set @ www.kaggle.com/datasets/jacksoncrow/stock-market-dataset

Data set 2 @ www.nasdaq.com/market-activity/quotes/historical

Cats and dogs (convolutional neural network)

Can you tell the difference between a cat and a dog?

Data set @ www.kaggle.com/datasets/shaunthesheep/microsoft-catsvsdogs-dataset

Traffic-sign recognition (convolutional neural network)

Accurately detecting road signs is a core challenge for the development of self-driving cars.

The traffic-sign recognition data set contains over 50,000 images across 40 classes of road

sign. Should we let you develop the Al for the next breed of self-driving cars?

Data set @ www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign

Movie-reviews sentiment analysis (choose between ANN and CNN)

This exercise will introduce you to natural language processing. Specifically, you will use

sentiment analysis to predict positive and negative reviews based on movie reviews on IMDb.

Data set @ www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

Be aware that this exercise will involve learning several additional important concepts to

implement. This is because the data set is text, but machine learning models require numeric

data to function, so significant preparation and preprocessing of your data is required.

The following tips will guide you:

O Convert text to lowercase and remove non-alphabetic characters.

[0 Tokenize the words, which is the process of splitting the text into individual words or

word parts. For instance, the string "hello world" would be tokenized into ["hello",

"world"]. Refer to www.nltk.org/api/nltk.tokenize.html|

[0 Remove stop words, which are words that generally don't convey meaning. Examples

include “a”, “the” and “and"”. Refer to https://pythonspot.com/nltk-stop-words

[Use a vectorizer such as CountVectorizer or TfidVectorizer to transform your text into

numeric vectors. Refer to https://scikit-learn.org/stable/modules/feature_extraction.

html#text-feature-extraction

O Convert your vectors into NumPy arrays.

[0 Create TensorFlow data sets from the NumPy arrays. Refer to www.tensorflow.org/api_

docs/python/tf/data/Dataset

Now you can build a neural network model and train it.

A4 Machine learning

1 An e-commerce company uses linear regression to predict customer spending based on their

past purchasing behaviour.

a State the assumption about the relationship between the dependent and independent

variables in linear regression.

b Describe how outliers could affect the performance of the linear regression model in

this scenario.

¢ Describe one method to evaluate the accuracy of this linear regression model.

2 Areal-estate company uses linear regression to estimate property prices based on features

like area, age and number of rooms. One of the technical staff expressed concern that

multicollinearity might be a problem with the model. Multicollinearity is when two or more

independent variables have a high correlation with one ancther in a regression.

a Explain why multicollinearity might be a problem in this linear regression model.

b Outline a method to handle multicollinearity if it is found in the data set.

3 A college uses linear regression to predict student success based on high-school GPA,

standardized test scores and college entrance essays.

a Outline one reason why it is important to assume linearity in this regression model.

b Suggest a technique to assess the model's predictive accuracy and explain its importance.

4 A medical research institution develops a decision tree model to classify patients into risk

categories for heart disease based on lifestyle and genetic data.

a Describe one advantage of using decision trees for this type of classification problem.

b Describe one disadvantage of using decision trees for this type of classification problem.

¢ i Identify one critical parameter in decision trees that could impact the

model’s performance.

il Qutline its role.

5 An online retailer uses k-nearest neighbours (KNN) to classify customer reviews as positive,

neutral or negative.

a Outline how the choice of k affects the classification accuracy in KNN.

b Describe one method to determine the optimal k value for this application.

¢ Describe how the scales used by features influence the performance of the

KNN algorithm.

6 A high school wants to classify students into different learning groups based on their learning

styles and previous academic performance.

a Qutline two reasons to select decision trees over KNN for this problem.

b Qutline two reasons to select KNN over decision trees for this problem.

¢ The school decided to use a decision tree. Describe one strategy to prevent overfitting in

the decision tree model.

7 A maintenance system uses supervised learning to forecast equipment failures in an

industrial plant.

a Define "precision” and “recall” in the context of this predictive system.

b Explain why the F1 score is a better measure than accuracy in scenarios where false

negatives have higher costs.

¢ Describe how a confusion matrix can be used to visually illustrate the success of

the model.

Ad .3 Machine learning approaches (HL)

8 A health diagnostic application uses supervised learning to classify patient results as “normal”

or "abnormal”.

a Qutline the importance of a high recall rate in this medical classification task.

b Describe how an imbalanced data set might affect the performance metrics like precision

and recall.

¢ i Identify one method to adjust the classification threshold.

ii Describe its impact on the F1 score.

9 An online retailer uses k-means clustering to segment customers based on purchasing patterns.

a OQutline the objective of the k-means clustering algorithm.

b Describe one challenge when using k-means clustering for customer segmentation.

¢ Describe how the choice of k affects the outcomes of the k-means algorithm.

10 A telecommunications company uses spectral clustering to segment customers based on

usage patterns.

a Describe the difference between k-means and spectral clustering in handling non-

spherical data clusters.

b Describe one challenge in using spectral clustering for large data sets.

¢ Describe how the results of spectral clustering could be used to improve

customer satisfaction.

11 A social-media company uses clustering to identify social groups on its network system.

a Identify which clustering algorithm would allow identification of sodial groups in

this network.

b Describe one potential challenge in clustering users based on such diverse data.

¢ Describe how the choice of the number of clusters can affect the results.

12 Urban planners in a large city are using data collected from traffic sensors at various

intersections and highways to identify clusters of intersections and road segments that exhibit

similar traffic patterns.

a Describe a suitable algorithm that the urban planners could use to group sensor data into

clusters based on their traffic characteristics. Explain why this algorithm is appropriate for

handling data with varying densities and noise.

b Describe how understanding these traffic clusters could benefit the city's traffic

management and infrastructure planning.

13 An e-commerce platform analyses user purchasing data to discover frequent buying patterns.

a Define “lift" in the context of association rule mining and its importance.

b Describe how minimum support and confidence levels affect the rules generated in

this scenario.

¢ Describe the potential impact of these buying patterns on targeted marketing strategies.

14 A library analyses borrowing patterns to find associations between different genres of books

borrowed together.

a Define “confidence” and “support” in association rule mining for this library data.

b Describe how the library can discover these patterns.

¢ Describe one potential limitation of association rule mining in predicting book-borrowing

patterns.

15 An engineering firm uses genetic algorithms to optimize the design of a new aerodynamic

vehicle model.

a Outline the role of crossover in genetic algorithms.

b Outline how mutation affects the evolution process in genetic algorithms.

¢ Qutline one advantage of using genetic algorithms in complex optimization problems

such as vehicle design.

A4 Machine learning

16 A school runs an elective block on the timetable where students can select from a number

of creative and optional courses. Students are asked to indicate their preferred courses but

are not guaranteed to receive their first preference. The school uses a genetic algorithm to

maximize the number of students receiving their first or second preference.

a Outline the function of selection in genetic algorithms.

b Describe the concept of “fitness function” in genetic algorithms, and how it might be

applied in this scenario.

¢ Describe how population size influences the outcome of a genetic algorithm.

d Qutline two benefits of using genetic algorithms to design a timetable schedule.

e Qutline two drawbacks of using genetic algorithms to design a timetable schedule.

17 A financial institution employs an artificial neural network to predict loan default risk based

on customer profiles.

a Identify one type of layer often used in neural networks and its purpose.

b Describe why overfitting might be a concern in neural networks.

¢ Describe how a neural network can be trained to minimize prediction error in this

financial context.

18 An energy company uses a neural network to forecast electricity demand based on weather

conditions and historical usage.

a i Identify whether the neural network in this scenario would be regression or

classification based.

i Qutline the significance of that on its design.

b Outline one type of activation function used in neural networks and its purpose.

¢ Outline which activation function would most likely be suitable for the output layer in this

scenario, and why.

d Describe why deep neural networks might be more effective than shallow networks for

this forecasting task.

e Define “backpropagation” and outline its role in learning within a neural network.

f OQutline two challenges associated with training deep neural networks.

19 A tech company experiments with several machine learning models to predict user

engagement on a new app.

a Define “model selection” in the context of machine learning.

b Identify two metrics that could be used to select the best model for predicting

user engagement.

¢ i Qutline the concept of cross-validation.

ii Describe one reason why it is important in model selection.

20 A sports analytics company tests multiple models to predict the outcome of basketball games.

a Describe the concept of "overfitting” in the context of model selection.

b Identify three factors that should be considered in model selection.

Ad .3 Machine learning approaches (HL)

Ethical considerations

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» A4.4.1 Discuss the ethical implications of machine learning in real-world scenarios

» A4.4.2 Discuss ethics as technologies become integrated into daily life

A4.4.1 Ethical implications

(®Tok
Does all knowledge impose ethical obligations on those who know it?

Discuss the ethical use of machine learning, especially in sensitive areas like surveillance or

decision-making.

In surveillance (like facial recognition), concerns about privacy, consent and surveillance biases abound.

Surveillance systems can be used to monitor, control and sometimes discriminate against populations.

With the involvement of machine learning in decision-making, such as in hiring, lending and law

enforcement, these systems can influence people’s lives significantly, and have been shown to

inherit and amplify biases present in the training data.

Machine learning models — inherently knowledge-driven systems — are based on data that

encapsulate various forms of knowledge, from human behaviour to biological patterns. As creators

and users of these systems, there is a responsibility to ensure that this knowledge is used ethically.

The world is changing rapidly. Advances in technology, including those in machine learning,

pose significant challenges and questions for us as a society. It is important to take some time

to weigh these ethical questions and not get caught up by the shiny new tech without taking

the time to think through how it will impact us and those around us. The following are some

of the ethical issues to consider.

B Accountability: With whom or where does responsibility lie for decisions made by machine

learning systems? Is it with the company that produced the AT or the people using it? Is it a

blend of both? Is it possible to determine how and why a machine learning system made a

particular decision?

One incident that highlights the issue of accountability involved a self-driving car. The driver

who was behind the wheel of a self-driving car when it hit and killed a pedestrian in 2018

pleaded guilty to endangerment and was sentenced to three years of supervised probation.

B Algorithmic fairness and bias: Machine learning can perpetuate existing social bias if it

is present in the training data, or if the model's design knowingly or unknowingly favours

certain groups. Fairness requires actively identifying and mitigating bias in the data set

and algorithms.

COMPAS is a recidivism algorithm used by many US court systems. It has been found to

have racial bias, predicting higher risk of recidivism for black people and lower risk of

recidivism for white people.

A4 Machine learning

Another example is that, in 2018, Amazon scrapped a “secret” Al recruiting tool that was

biased against women.

Finally, generative Als have a constant challenge regarding reinforcing and exacerbating

stereotypes and bias.

B Consent: Large data sets used for training regularly contain information collected without

explicit consent. Many large companies are now performing machine learning on their

customer databases, or selling their customer data to other data-matching companies. How

much control should people retain over their personal information?

Google’s DeepMind was found to be in breach of UK privacy laws after it failed to

adequately inform patients about the use of their personally identifiable health data in

developing an app to detect kidney injuries.

B Environmental impact: Machine learning models require enormous computational

power, especially in the training phase. This leads to substantial energy consumption and

implications for carbon emissions.

Cornell University scientists found that training LLMs (large language models) like GPT-

3 consumed an amount of electricity equivalent to 500 metric tons of carbon. In fact,

DatacenterDynamics reports global power use by data centres will more than double from

460 TWh in 2022 to over 1000 TWh in 2026.

B Privacy: Machine learning systems can predict or classify personal behaviour in ways

that invade personal privacy. The capacity of machine learning systems to apply inference

means privacy may be further compromised by systems deducing health conditions not

even provided to the model.

In 2018, fitness tracking app Strava released a global heat map of user activities that

inadvertently revealed the locations of secret military bases and patrol routes, showcasing a

significant privacy leak.

B Security: Machine learning systems can be vulnerable to attack through a variety of means.

Three common attacks include:

[0 data poisoning, which involves introducing untrue or harmful data into the training

data set to manipulate the model for nefarious purposes

0 model evasion, where input (such as prompts) is used to “trick” the model into making

incorrect outputs against its training (sometimes known as “jailbreaking”, in the

context of generative AI)

0 model inversion, referring to gaining access to sensitive data contained within the

training data.

‘Within 24 hours of release, Microsoft's Tay Twitter Bot was manipulated through malicious

input data to produce grossly inappropriate and offensive tweets.

‘When GPT-3 was first released by OpenAl, it lacked many of the filters now present and it

was trivially easy to engineer prompts that produced foul, toxic or illegal content.

B Societal impact: Machine learning is increasingly disrupting employment markets, and

influencing public opinion. There is a careful balance between technological advancement

and maintaining social welfare, which needs to be considered.

Clearview Al, which scrapes billions of photos from the internet for facial recognition, has

raised societal concerns about surveillance, consent and civil liberties.

m Transparency: Most engineers cannot explain how their systems generate the outputs

they create, especially those that use neural networks. The best that can be done is to

A4 .4 Ethical considerations -

point to the training data rather than the algorithm itself. This lack of transparency,

or human understandability, of what these algorithms are and how they work poses

significant questions.

In 2019, tech entrepreneur David Heinmeier Hansson wrote on X (formerly Twitter) that

Apple Card offered him 20 times the credit limit of his wife, although they have shared

assets and she has a higher credit score, raising questions about the transparency of the

algorithms used for financial decision-making.

Bias in training data: Bias in training data is a core challenge for machine learning. Over-

or under-representation of particular demographics will affect the model’s predictions and

reliability. Rigorous data collection, processing and evaluation methods are required to

ensure broad and fair representation.

Misinformation: Machine learning can generate and spread false information with

ease, making it very difficult to ensure accurate and reliable communication online. As

generative Al in particular, becomes increasingly realistic and convincing in its outputs,

it will become almost impossible to avoid falling victim to fake news, fake images and

fake videos.

It is believed that misinformation on Facebook received six times more clicks than factual

news during the 2020 US election, according to a study by NYU.

As generative Al deep fakes become weapons of the political debate, confusion over what to

believe will only pose more complex challenges in the future.

Bias in online communication: Machine learning-based recommendation systems are

designed to maximize user engagement on a platform. One method of doing this is by

recommending more of the same kinds of content that users have previously engaged

with. This can create “echo chambers” that reinforce existing beliefs and minimize

alternative viewpoints.

Facebook newsfeed algorithms and YouTube’s recommendation systems have both been

criticized for crearing filter bubbles and echo chambers, where users are predominantly

shown content that aligns with their existing beliefs, potentially polarizing public opinion.

Online harassment: Machine learning can be used to automate harassment on an

enormous scale. Bots can troll and target individuals or groups with ease, and can

increasingly make it seem like the attacks are coming from people. Generative Al is being

used to create deep fakes in hurtful and abusive ways that authorities are struggling to keep

up with.

Privacy and anonymity in online communications: Users often are not aware of or do not

fully understand how their data are used and processed by machine learning algorithms.

Users may think their actions are anonymous, but increasingly machine learning

algorithms can perform de-anonymization with a high degree of reliability. There is very

little awareness of this in the broader community.

In 2006, Netflix released a data set containing 100 million movie ratings from 500,000

subscribers, intended for use in a global competition to improve the accuracy of Netflix’s

recommendation algorithm. The data was supposedly anonymized by removing any personal

identifying information. Researchers from the University of Texas at Austin demonstrated

that it was possible to re-identify users by comparing the anonymized Netflix data with

publicly available movie ratings on the Internet Movie Database (IMDb). Using only a small

amount of additional information about an individual’s preferences, the researchers were able

to identify personal viewing habits and potentially sensitive information.

A4 Machine learning

(;Top tip!

This section shared

real-life case studies

on the impact of

many of the ethical

questions being

raised by this topic.

Be familiar with case

studies that you can

refer to in your exam

responses. If you can

discuss with specificity

a relevant situation

that occurred, it goes

a long way towards

demonstrating that

you care about

the issue.

A4.4.2 Reassessing ethics as technologies
become further integrated
As s artificial intelligence and other technology continues to advance and evolve over the years

ahead, society is going to need to regularly reassess the implications from an ethical viewpoint.

T

u

here are many challenges that lie ahead; the following list is just a discussion starter.

Quantum computing: Quantum computing could potentially break many of the

cryptographic systems that currently secure digital communications and cryptocurrencies.

The development of quantum-resistant cryptography is an important area of research that

needs to be prioritized.

Augmented reality: AR can collect vast amounts of personal data about users’

environments. Additionally, what are the ethics around altering a person’s perception of

reality? Does this disconnect them from the society of which they are part, resulting in a

loss of empathy?

Virtual reality: As VR becomes more realistic, what are the mental-health concerns for

those who use the systems excessively or for escapism? What should the limits be when it

comes to VR being used to access violent or explicit material?

Pervasive AL: How do we guard against intrusive surveillance and the seemingly never-

ending collection of our personal data for use in machine learning data sets?

Privacy: Who owns the data about you? Is it you, or the company that collected it? As data

collection becomes more complex, will there be a move towards more transparent and

informed consent about what happens with our personal information?

Equity: How can we ensure that advances in technology reduce rather than magnify

equitable access to technology across socio-economic, racial, gender, social and

geographical groups?

GCommon mistakes

A4 .4 Ethical considerations

Students make a number of common errors when addressing ethics-related questions, which

extends to the discussion of machine learning.

m Don’t oversimplify the issues. Avoid reducing complex ethical issues to simple right or

wrong answers. The ethical implications of machine learning are nuanced and often involve

interconnected considerations of accountability, fairness and societal impact.

® Don’t confuse technical bias with ethical bias. Distinguish between technical bias

(deviation in an algorithm that leads to less accurate predictions) and ethical / social bias

(prejudices in data that lead to unfair outcomes for certain groups).

® Don’t limit your responses to issues of privacy and security. Consider a broader range

of ethical issues, such as environmental impact, sodietal changes and the implications for

mental health. Show you have a deep understanding of the complexities involved, rather

than taking the lazy approach of resorting to an exam response that discusses privacy or

security superficially.

B Don’t neglect the importance of reassessment. Ethics guidelines can never be static, as

technology and its impact on society is not static.

Social skills: Set up a class debate or panel discussion where you argue the ethical

implications of using machine learning, such as bias, privacy and transparency concerns.

Facilitate peer feedback sessions where you review and provide constructive criticism on

each other’s machine learning projects or presentations.

Some possible debate prompts include:

B Should health-insurance companies have access to predictions about potential future

ilinesses to set premiums, even if this could lead to higher costs for those deemed at

higher risk?

B Should autonomous vehicles be programmed to prioritize the lives of pedestrians

over the life of the vehicle’s passenger(s)? How should these ethical decisions be

programmed into autonomous systems?

B s it ethical to use a recruitment tool that shows bias towards certain educational

institutions? Should the company stop using it until it can be proven to be unbiased?

m If a city implements widespread facial recognition through CCTV cameras to reduce

crime, is this worth the lessening of privacy or the risk of false accusation?

B Should social-media platforms be held responsible for breaking echo chambers and

ensuring a balanced exposure to different viewpoints? How can this be balanced with

business models that require maximizing engagement to earn revenue?

1 An Al company develops a facial recognition system used in public surveillance.

Outline three ethical implications of using facial recognition technology in public spaces.

b i Identify two potential biases that could arise in facial recognition systems.

it Outline the societal impacts of each.

¢ Outline two measures that could be implemented to address these ethical concerns

and biases.

2 Asocial-media company uses algorithms to personalize newsfeeds based on user interactions.

a Qutline two potential ethical issues related to algorithmic bias in personalizing newsfeeds.

b Qutline two strategies the company could implement to ensure the ethical use of

personalization algorithms.

¢ i Identify two implications of lack of transparency in algorithmic decision-making.

il Outline two methods to improve transparency in algorithmic decision-making.

3 A university uses Al to make admissions decisions based on application materials.

a Outline three potential ethical concerns with using Al in university admissions.

i Outline two possible biases that could arise in this Al system.

il Outline their impact on students.

¢ Describe measures to address these ethical concerns and biases.

s
e
s
s
s
s
s
s
s
s
s
s
s
n
n
n
s
a
n
n
s

D R P T

@ Linking questions
1 How can machine learning be applied to optimize network traffic management? (A2)

2 How does database programming in SQL differ from programming computationally in a

high-level language? (A3, B2)

3 To what extent are developments in machine learning ethical? (TOK)

4 How can larger models be processed using GPUs and cloud processing? (A1)

5 Can machine learning find and improve network security problems? (A2)
D L T P T S

s
s
s
s
s
s
s
s
s
s
s
s
s
s
a
n
s
a
s
s
n
n
a
s

A4 Machine learning

1 Health monitoring app

A tech startup has developed a health monitoring app that uses machine learning to predict

potential health issues based on user-inputted symptoms, lifestyle data and historical health data.

The app classifies user health into categories such as “low risk”, “medium risk” and "high risk".

a i State whether this system should be classified as artificial intelligence or

machine learning. [1]

il Outline one reason for your choice. 2]

b Describe the potential need for specialized hardware (e.g. GPUs) in deploying this app

on mobile devices. 2]

¢ Describe the importance of data cleaning in this scenario, particularly addressing

missing values in lifestyle data. 2]

d Describe how feature selection could impact the accuracy and efficiency of the

predictive model used in the app. 2]

e Suggest the type of machine learning algorithm that would be suitable for this

classification task. (4]

f Outline the implications of choosing a high value of & in a k-nearest neighbours (KNN)

algorithm for this application. 2]

g Outline three ethical concerns related to privacy and data security in health-related apps. [3]

h Describe two measures that could be implemented to address potential biases in the

data set, especially relating to underrepresented groups. 2]

2 Autonomous public transport system

A city plans to implement an autonomous bus service that uses machine learning to optimize

routes based on traffic patterns, weather conditions and passenger demand.

a i Define "edge computing”. [1]

ii Describe its relevance in real-time data processing for autonomous vehicles. 2]

b Describe whether a deep learning model would be more effective than a traditional

machine learning model for processing complex environmental data. 2]

¢ Describe how data normalization affects the performance of machine learning models

dealing with varied data types such as weather conditions and traffic density. 2]

d i Identify a common data quality issue that might arise with real-time traffic data. [1]

ii Outline a preprocessing step to mitigate these issues. 2]

e Describe how reinforcement learning could be applied to optimize bus routes dynamically. [2]

f Discuss the potential use of transfer learning from other cities’ traffic management

systems to improve route optimization. 2]

g Describe the ethical implications of using surveillance data (e.g. from traffic cameras)

in training machine learning models for public transport systems. 2]

h Describe the societal impacts of replacing human-driven buses with autonomous

buses, including job displacement and public safety. 2]

3 Al-powered recruitment tool

A multinational corporation implements an Al-powered tool to screen job applications and predict

the suitability of candidates based on their résumés and answers to pre-interview questions.

a Describe the classification vs regression nature of the predictive model used by the

Al tool. 2]

b Describe the impact of processing speed and memory requirements on the scalability

of the Al tool across the corporation’s global offices. 2]

¢ i Identify potential biases in the training data set. [1]

i Outline how these could be mitigated during data preprocessing. 2]

d Describe the importance of feature selection in improving the predictive accuracy of

the Al tool. 2]

e Describe the use of a decision tree model over a regression-based model for this

classification task. [3]

A4 .4 Ethical considerations

f Outline two ethical concerns related to Al decision-making in recruitment, particularly

in terms of fairness and transparency. [2]

g Describe two methods to ensure the ethical use of Al in recruitment with respect to

increasing transparency and accountability. 2]

4 Retail customer segmentation

A large retail chain uses machine learning to segment its customer base to personalize

marketing strategies and improve customer service.

a Discuss whether supervised or unsupervised learning is more appropriate for

customer segmentation. 4]

b Outline the potential benefits of using cloud computing resources over in-house

servers for processing large customer data sets. [2]

¢ Outline the role of outlier detection in customer segmentation. 2]

d i Identify a clustering algorithm suitable for handling large data sets with

high dimensionality. [1]

il Describe a reason for your choice. 2]

e Describe the potential privacy issues that may arise from the detailed segmentation of

customers’ buying habits. [3]

f Describe strategies to mitigate the risk of discriminatory marketing practices that could

result from biased data in customer segmentation. 2]

5 Natural-disaster prediction and management

A government agency deploys machine learning models to predict natural disasters such as

floods and earthquakes, aiming to enhance preparedness and response strategies.

a Describe the application of neural networks in predicting natural disasters and the

kind of data they might process. 2]

b Describe the impact of using real-time data processing on system requirements

and infrastructure. [2]

¢ Describe the challenges associated with integrating and cleaning data from multiple

sources, such as satellite imagery and geological sensors. 2]

d Describe the role of data augmentation in improving the accuracy of predictions in

areas with sparse historical data. 2]

e Describe the use of deep learning over traditional models for predicting complex

natural disaster patterns. [2]

f Describe how machine learning models can be trained to adapt to new types of

disaster data over time. 2]

g Describe the ethical implications of false positives and false negatives in disaster

prediction models. [3]

h Describe protocols for data governance that may ensure sensitive geographical and

personal data used in predictions are protected. [2]

6 Automated cyberbullying detection system

A software company is developing an automated system to detect and flag instances of

cyberbullying on social-media platforms using natural language processing and machine learning.

a i Define “natural language processing (NLP)". [1]

il Describe its relevance in detecting cyberbullying. [2]

b i Describe the computational challenges associated with processing large volumes

of social-media data in real time. 2]

il Outline appropriate hardware solutions. [2]

¢ Describe the potential preprocessing steps needed for textual data from social-media

posts to prepare it for machine learning models. 2]

d Explain the importance of handling sarcasm and ambiguities in text when setting up

preprocessing pipelines for detecting cyberbullying. [2]

e Describe the use of analytical rule-based systems vs machine learning models in the

context of cyberbullying detection. [2]

f OQutline the ethical considerations of implementing an automated cyberbullying

detection system, particularly regarding false positives and false negatives. [3]

g Describe the potential privacy implications of analysing users’ social-media content,

even for the purpose of detecting cyberbullying. [2]

A4 Machine learning

B1 Computational
thinking

Approaches to

computational thinking

4 Problem

specification: a short,

clear explanation of

an issue, which may

include: a problem

statement; constraints

and limitations;

objectives and goals;

input and output

specifications; and

evaluation criteria.

4 Stakeholder: an

individual or group(s)

of people within or

outside an organization

who are affected

or think they are

affected by a software

development project.

Problem statement:

a description of

the problem itself,

identification of who the

solution is designed for,

the issues encountered

and what needs to

be solved.

How can we apply a computational solution to a real-world problem?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B1.1.1 Construct a problem specification

» B1.1.2 Describe the fundamental concepts of computational thinking

» B1.1.3 Explain how the fundamental concepts of computational thinking are used to

approach and solve problems in Computer Science

P B1.1.4 Trace flowcharts for a range of programming algorithms

B1.1.1 Problem specification
Ever since their beginnings, computers have required a method to instruct them to perform

a specific task. Now, we provide instructions to a computer via a programming language.

Ada Lovelace, Charles Babbage, Alan Turing and Konrad Zuse are all recognized for their

contributions to the development of coding and computer languages. Initially, programming

languages were developed as a series of steps to wire a particular program. Then, they

developed into a series of steps typed into a computer and then executed. Later, they acquired

more advanced features, such as iterations; branching and even polymorphism; inheritance;

and other object-oriented programming principles.

Even when tackling straightforward problems, it is essential to furnish the computer with

precise instructions to enable it to carry out the tasks and resolve the problem.

However, you will not be able to provide clear instructions on how to solve a problem until you

clearly outline the problem specifications.

A problem specification is a short, clear explanation of an issue, outlining who the

stakeholders are and why it is important to solve the problem. The problem specification

may include a problem statement; constraints and limitations; objectives and goals; input and

output specifications; and evaluation criteria.

This is a great opportunity to think of your internal assessment project. When you define the

problem statement, you need to include a description of the problem itself, who the solution

is designed for, the issues encountered and what needs to be solved. To clearly understand

the problem, you are encouraged to collect information from existing literature and research,

use previous experiences with the problem and discuss it with multiple stakeholders who are

impacted by the problem. In this way, you will be able to identify some possible constraints

and limitartions, for example:

B Limitations regarding the available technical requirements (hardware or software equipment)

Economic aspect (cost of producing the solution)

Legislation (regulations regarding the software development; ethical, social and legal aspects)

Operational issues (workforce available)

Schedule (time required to develop and implement the solution).

B1 Computational thinking

Once those are clearly defined, in collaboration with the main stakeholders you should outline

the objectives and goals of the proposed solution, identifying what needs to be solved and what

you want to achieve.

Every solution will include some form of input and output. Knowing how the input is being

provided, which input is supplied and the expected outcome or output to be produced

will help you understand the required process to reach your goal. The input can be in

different forms:

B Direct entry (by using barcode scanners; OCR or OMR scanners; or MICR readers)

B Manual entry (keyboard, joystick, touch screen, touch pad or mouse entry, or data

manually being entered by human operators)

B Automatic data entry (by using sensors: temperature, light, infrared, pressure, and so on).

Each of those has advantages and disadvantages. For example, manual entry might be cheaper,

but it is prone to errors, while automatic entry is clearly more expensive due to the hardware

or software involved, but it is more accurate and faster.

‘When it comes to output, this can be classitied as temporary output (displaying the

information on a screen), permanent output (printing the data), or electrical or mechanical

output (using actuators: switches or relays).

Identifying the input data required and the output expected helps in outlining the data flow

and understanding how the data travels through the proposed solution.

Evaluation criteria is the last step in constructing a problem specification. Criteria should be

o Key clear, specific, measurable and related to the functionality to be achieved through the proposed

information solution. This will allow you to use these criteria to evaluate the success of the productar a

Problem spedification later stage.

is part of the

requirements for

criterion A. It is 1 Identify three stakeholders in a technical shop selling gaming consoles, games and
considered the starting IT equipment.

point of the solution,

and it must be used

as a basis for the

Define the term “stakeholder”.

3 Define the term “problem specification”.

development of the 4 State three possible constraints and limitations when considering developing a computational

product. The success solution for a school.

criteria identified in the 5 In your school, identify those operations that have already been computerized; those that

problem specification might be computerized soon; and those that are unlikely ever to be computerized.

will be usediin the 6 For those activities you have identified as being already computerized at your school (for
planning, development

and the evaluation of

the product.

question 5), identify the inputs and outputs of the system.

7 Identify three reasons why there is a need to formulate a problem statement precisely.

(.-Top tip!

Performance issues related to the lack of identifying limitations and constraints, and inputs and

outputs specific to different systems in geographically diverse locations, may hinder end users and

reduce compatibility between systems.

B1.1 Approaches to computational thinking

Abstraction: having

a higher-level, simplified

maodel to represent

a complex system. It

allows you to focus

on the core ideas or

concepts that matter,

without being overly

concerned about the

intricate details of

implementation.

Imagine you must design and create an online platform to be used globally.

There are several constraints and limitations to take into consideration to ensure the

platform is scalable, user friendly, efficient and accessible across different regions.

Discuss:

® language and regional differences, e.g. currencies, languages supported, date

formats, units of measurement

B legal requirements, e.g. GDPR in Europe

B consumer-protection laws / content restrictions

B cultural differences and user behaviours that impact the design of the platform,

e.g. meanings of colours for different cultures, sensitivity of specific content, user-

interface alignment (left to right or right to left), time zones, scheduling.

How do such constraints support or limit the development of online platforms that can

be used worldwide?

Is targeting a local market more advantageous and efficient, rather than targeting a

global market?

B1.1.2 Fundamental concepts of
computational thinking

B Abstraction
Abstraction is the process of extracting essential information, while disregarding irrelevant

data, to propose or outline a feasible solution to a given problem. In this way, simplified

models can be designed; models that exclude unnecessary details. This plays a crucial role in

providing a solution that satisfies the user requirements and needs, as it solves the problem

without including unnecessary features, and in a shorter period due to the reduced amount of

code written.

Real-world examples of abstraction include designing a map as a representation of a territory;

a painting as a representation of a landscape; and a timetable. In programming, abstraction is

an important concept in object-oriented programming. It is used to hide complexity from the

user by:

B abstracting data entities (by hiding data entities via a data structure, reducing the body of

the data to a simplified version of the whole)

B hiding underlying implementation of a process (programmers don’t need to know details

of how the subroutines are implemented, or what other subroutines they call, but they can

simply use them to serve their purpose).

By using abstraction:

B the time required to create a piece of software is reduced

m the program becomes smaller in size, so it requires less space in memory and the download

times are reduced

B customer satisfaction increases, as their requirements are met without extra features.

B1 Computational thinking

Algorithm: a finite

sequence of instructions

that needs to be

followed step-by-step to

solve a problem.

(®Tok
What counts as knowledge?

The map as an abstraction of the territory: A map is not the actual territory it represents, but rather

a diagrammatical representation of an area, including some features and excluding others. The

London Tube map was designed in 1933 as a simplified model of reality, informing the traveller

how to navigate between stations, but excluding many other details and not providing an accurate

representation of the actual space. Investigate and identify the differences between the London

Tube map and other subway maps that you know.

Knowing the map doesn’t mean that you know much about the actual territory, just as knowing

the names of different items in different languages doesn't reflect your knowledge about the

items themselves.

Watch Richard Feynman's "Names Don't Constitute Knowledge”, or analyse the following quotation

to further explore the concept:

Naming things is a human act; it is not an act of nature. We are the ones who,
through language, create things out of the phenomena around us. Yet we forget
that we control this process and let the process control us. Naming things — using
language — is a very high-level abstraction, and when we name something we
“freeze” it by placing it in a category and making a “thing” out of it. Language is
a map, but three important things to remember about maps are: the map is not the
territory; no map can represent all aspects of the territory; and every map reflects
the mapmaker’s point of view.

Lutz, Wiliam (1996) The New Doublespeak: Why No One Knows What

Anyone is Saying Anymore. HarperCollins, New York, NY.

Investigate how knowing the name of something can positively or negatively influence our

life experiences.

B Algorithmic design
Before starting to write actual code, you should analyse and identify the requirements of the

problem and then understand the logical steps required to solve the problem. Once you have

a firm grasp of the requirements, the next step involves designing a potential solution. One

effective approach for achieving this is to create an algorithm. This involves creating step-by-

step solutions with predictable outcomes.

An algorithm is a structured set of sequential instructions designed to address and resolve

a problem.

Consider the following problem:

“A user is required to provide two whole numbers. Construct a program that calculates the

sum of the two numbers and displays it.”

The algorithm corresponding to the problem above is:

Step 1: Ask the user to enter a number.

Step 2: Store this number.

Step 3: Ask the user to enter another number.

Step 4: Store this new value.

Step 5: Add the two numbers together.

Step 6: Store the result.

Step 7: Display the result.

B1.1 Approaches to computational thinking

Decomposition:

breaking down complex

problems into smaller,

more manageable parts.

Pattern recognition:

identifying similarities in

the details of problems.

4 Computational

thinking: a toolkit of

available technigues

for problem-solving; its

fundamental concepts

are abstraction,

decomposition,

algorithmic thinking and

pattern recognition.

Those steps need to be very specific and in the right order to be able to solve the problem. By

applying algorithmic designs, you will develop algorithmic thinking skills that will help you

develop efficient problem-solving techniques, by using structured and systematic algorithms.

(;Top tip!

When outlining algorithms, ensure the instructions are very specific, clear and in the right order. Not

following the required order often leads to the wrong solution or different errors. Imagine you need

to calculate the average of three numbers. Setting the value of sum to 0 after storing the total of

the three values into the variable sum and attempting to divide this by 3 afterwards would produce

an error.

B Decomposition
Decomposition refers to breaking down complex problems into smaller, more manageable

parts. After designing solutions to those smaller problems, they can be put together to build up

a final solution to the complex problem. This concept supports modularity, allowing multiple

programmers or experts to collaborate and work simultaneously on solving the problem.

In programming, decomposition is often used to structure the solution, by designing several

methods or functions.

(;Common mistake

Students do not always use terminology in an appropriate and competent way, and may approach

questions by providing general superficial knowledge, which does not gain full marks.

Students often define "decomposition” as breaking down a program into smaller sub-programs.

This isn't accurate as, at the stage decompasition accurs, there is no program created, therefore

the problem is the one being broken down into smaller, more manageable parts.

B Pattern recognition
Pattern recognition refers to identifying similarities in the details of problems. This simplifies

the process of finding a solution by identifying patterns and focusing on reusing solutions

proposed to solve those similarities. This means that you will develop reusable code in the

form of functions or procedures; reuse existing code that has already been tested; and support

the use of modularity, which reduces the development time.

B1.1.3 How fundamental concepts of
computational thinking are used to approach
and solve problems in Computer Science
Computational thinking is not programming, and it does not make you think like a computer,

but rather it makes you think like a computer scientist. It is a toolkit of available techniques

for problem-solving. This gives you the skills to efficiently outline a problem specification; to

analyse, understand and simplify the problem; and to identity and choose optimal solutions to

different problems.

The fundamental concepts of compurational thinking, such as abstraction, decomposition,

algorithmic thinking and pattern recognition, can be used to solve real-world problems,

for example: software development, data analysis, machine learning, database design and

network-security problems.

B1 Computational thinking

In each of the areas identified above, all the fundamental concepts are equally important:

m Software development: You cannot create a program before:

0 understanding the problem

0 making abstraction of unnecessary details

0 finding repeating patterns

O designing efficient algorithms

Without any of these steps, the software produced might lack accuracy or might not be as

efficient as it should be.

B Games development: Abstraction is used when the players are provided with a series

of clues, some of which are intended to mislead the players. Abstraction refers to

disregarding unnecessary details. Players should disregard such clues and focus on the

important details.

B Programming: Programming languages oftfer libraries with functions and methods for

programmers to use. The programmer makes an abstraction of the way those functions

were written, focusing on correctly using them to complete their code.

B Data analysis: Computational thinking is used to automate repetitive tasks, predict market

trends and improve customer service. Data analysts identify patterns (for example popular

products for a category of people, repetitive tasks, frequent customer complaints) and apply

algorithmic thinking to propose feasible solutions and break problems into simpler steps,

saving hours of extra work on a weekly basis.

B Machine learning: Pattern recognition is an important concept, used in classifying

data by finding patterns in large amounts of data, for example predicting purchasing

behaviour based on buying habits. It can also be used to identify the skills required to be

a good football player, by analysing video recordings to automatically find patterns in the

behaviour of professional players. The same task might make use of abstraction to exclude

irrelevant information provided by the videos and algorithms to promote those skills

among new players during their virtual training sessions.

B Database design: Abstraction can be used to identify which data sources are relevant and

which can be disregarded. Decomposition can be used to design relational databases by

breaking down the complex problem into smaller ones. Entities can be represented as

tables, and relations shown between them.

m Database normalization: Pattern recognition can be used to ensure there are no repeated

groups of attributes or algorithmic design in outlining the tables’ structures, and identify

the logic behind the types of relationships established between tables.

B Network security: For solving network-security problems, abstraction enables the

generalization of complex security models; decomposition is used to break down

cybersecurity ecosystems into models that allow a clear identification of their security

roles; pattern recognition is used to outline ways to identify and classify possible threats to

the network; and algorithmic design is used to propose clear, step-by-step instructions on

how to deal with such risks in similar situations.

B1.1 Approaches to computational thinking

(®Tok
Knowledge and Al

Al is rapidly improving, and it can easily achieve goals that pecple previously considered impossible.

Machines can spot patterns at amazing rates, take dedisions, output surprising results and even

learn new things. But how do they get access to their wide range of data? What is the role of our

digital footprint in improving machine learning techniques? And does online data about you give the

full picture of what you are really like as a human being? Systems predicting human behaviour could

lead to discrimination, so how do we ethically define the limits of knowledge that has been created

with the help of technology?

Machine learning pushes the boundaries of how we perceive knowledge. People are excellent at

generalizing, identifying patterns and predicting future actions or outcomes based on previous

experiences. However, recent technological developments show that machine learning can compete

with humans even in this area. Researchers are using symbolic and statistical Al to teach machines

to reason about what they see. They can beat humans at a chess game, create original or fake art

and provide medical diagnoses, and they can do all this with minimal or no human intervention.

What does this mean for knowledge? Can a machine ever “know” something? Could knowledge

reside outside human cognition?

To further explore the concept, try to create a deepfake video. How does this experience change

your view on the saying “seeing is believing”? How does not knowing how to distinguish between

good and bad knowledge influence our choices between the most appealing and the most

accurate information?

Reflective: Consider how you achieve success and how you could change your approach

when learning becomes challenging.

Sacial skills: Listen actively to other perspectives and ideas - there are different ways to

solve a problem, some better than others; listen to advice and try new techniques and

problem-solving strategies.

Identify three examples of abstraction in Computer Science.

Define the term “decomposition”.

Outline the algorithm for making a cup of tea.

Outline an area where computational thinking is used in Computer Science.

Define the term “algorithm”.

Research the bubble sort algorithm. Qutline the steps for this algorithm.

L

-

Y

I

U

N

Research the swap puzzle activity and try to outline an algorithm to solve it in as few steps

as possible.

B1.1.4 Flowcharts

Flowcharts are used to design algorithms, and to describe them using diagrams. They can be

used to track variable changes, to show execution flow and to determine the expected output

of an algorithm.

B1 Computational thinking

B Standard flowchart symbols

Symbol Name Description

Terminator Start or end of the process

Input / output Input or output of data

oJ
OL
LL

Process Action, such as a calculation or an assignment

Decision True / false or yes / no decisions (selection statements)

Flowline Direction of data flow between shapes

Connector Continuation of a flow through multiple pages or charts

Consider the following problem:

Request the user to input two numbers from the keyboard. Qutput their average.

To solve the problem, identify the input, processes and output:

B Input: the two numbers (a, b)

® Outpur: the average of the two numbers (avg)

B Processes: calculate the sum, calculate the average.

The flowchart corresponding to the proposed solution is given below:

INPUT a,b

|
sum<-a+h

avg <-sum/2

}
OUTPUT

"The average is ", avg

B1.1 Approaches to computational thinking

Flowcharts can become a little more complex by including selection or iteration. For example,

the flowchart corresponding to an algorithm that outputs the larger of two different input

numbers requires selection statements:

START

fi INPUT a,b J

l/TRUE FALSE j'

max <-a max <-b

L —O—]

QUTPUT "The larger value is ", max

If you wanted to check the algorithm above you could test it with different test data, suchas 7

and 3. To find the expected ourput, a table can be drawn and traced. The table includes the

variable changes, decisions and outputs expected.

a b max a>b output

To trace the table and reach the final output, you need to go through the flowchart and follow

the data flow shown by the arrows.

In this case, the first happening in the flowchart is the input. So, as a is the first input it will

take the value 7 and b will be set to —3, and the table will look like this:

a b max a>b output

7 -3

B1 Computational thinking

(;Common

mistake

Students often forget

to label the branches

of decision boxes when

drawing flowcharts.

An unlabelled branch

would not allow the

examiner to identify

which process is

executed when the

condition evaluates to

True (Yes) and which

executes when the

condition evaluates to

False (No). Also, make

sure the flowlines are

connected and none

have no connection to

a shape.

B1.1 Approaches to computational thinking

The next step is to check if the value stored in a is higher than the value stored in b.

a b max a>b output

7 -3

TRUE

7

Finally, the output will be displayed.

a b max a>b output

7 -3

TRUE

7

The larger value is 7

Please note that you don't have to insert each new value on a new line, but this was done just

so you can notice the order of execution of the given operations. Trace tables will be further

explored in B2 Programming.

1 Draw a flowchart that would represent a solution for the following problem:

“Initialize a total to zero. Ask the user to enter 50 integer numbers, add the positive

numbers to the total and count how many negative values were entered. Qutput the total

and the count value.”

Research the insertion sort algorithm. Draw a flowchart for this algorithm.

3 Consider the following flowchart.

rev<-0

I
¥

—No Yes——

remainder <- number MOD 10

output rev rev <- rev * 10 + remainder

number <- number DIV 10

| I

a Research the role of the MOD and DIV functions. Trace the flowchart to find the

output for the number 3452 and for the number 1760.

Input: 3452

number rev number > 0 remainder output

(.-Top ti pl Input: 1760

number rev number > 0 remainder output

When filling trace

tables, ensure that

you write the value

a variable takes after

an assignment, even

if it is a repetition of

the previous value. If

the variable does not

change for a portion

of code, you can leave b Use pattern recognition to predict the output for the number 453453554651.

that section blank or

rewrite the repeating

values.

¢ Identify the purpose of the algorithm.

d Identify a problem with this algorithm.

Thinking skills: Critical and creative thinking: A small family business that delivers

goods within its small city is looking to further expand its reach. It is thinking of the

following scenarios:

m Creating brochures, which would include its products and its phone number, and

distributing them in the three neighbouring cities. It would take the orders by phone

and deliver them as before, with cash payment on delivery.

m Creating an online platform that would allow it to promote its products. Customers

would place the orders online and pay for their purchases online, and the company

would deliver the goods via available transportation services within the country.

B Promoting its business via social-media channels. It would take the orders via

instant-messaging services with bank-transfer payments, and deliver the products via

transportation services available within the country.

Choose one of the scenarios above. Prepare a presentation that includes a problem

specification. Identify the stakeholders; the problem statement; constraints and

limitations; objectives and goals; input and output specifications; and evaluation criteria.

Consider the probable cost involved in implementing the scenario you have chosen, the

time required to implement it, the hardware and software requirements, and possible

effects on the community and staff members.

Deliver your presentation to the class and receive feedback from your peers.

B1 Computational thinking

@ Linking questions
1 How is pattern recognition used to identify different types of traffic flowing across a E

network? (A2)

2 How are the concepts of computational thinking used in code when designing algorithms? (B2) *
T T T Ty

Note: All the exam practice questions are representative of those that will be found on Paper 2

for the International Baccalaureate Diploma in Computer Science.

s
s
s
s
s
s
s
s
s
a
n
s

1 Define the term “computational thinking” and outline its role in problem solving. [3]

2 Outline the role computational thinking techniques like decomposition and abstraction

play in software development. [4]

3 Identify three items that should be included in the problem specification and define ane

of them. (4]

4 Explain how pattern recognition can be used in data analysis, machine learning and

database design. (6]

5 A teacher is asking 30 students how long they spend each day reading. The students will

specify this duration in minutes and hours, for example 1 hour and 20 minutes. The teacher

wants to write an algorithm that will output their input in minutes only.

a |dentify the input, process and output required for this algorithm. [3]

b The teacher wants to create a ranking and send to parents the list of students in

descending order based on their time spent reading books. Outline the steps required

(the algorithm) to complete this task. [3]

¢ Identify two stakeholders involved in this process. [2]

d To keep their personal details anonymous, the teacher decides to create a username for

each student. The username is made of the last two characters of their first name and the

first three characters of their last name.

i The first student's name is Sam Sung. State the corresponding username. [1]

ii Draw a flowchart to outline the creation of usernames for the 30 students. (4]

iii Explain one limitation of this algorithm and propose a better one. [3]

B1.1 Approaches to computational thinking

y return n.each
jar b:
(return «. OON

. faillc.r

: ,readywal ¢

itechange” ;!

shilventListener

MR 00") e style.
e L |, c.removeChi

(N {[\w\W)

B2 Programming

Programming fundamentals

(part 1)

Variable: a

designated memory

location that stores a

value that can change

during the execution of

a program.

Loop / iteration: a

repetition.

Selection: a

conditional statement or

decision statement, e.g.

IF, CASE statements.

Data storage:

storage of data within

primary or secondary

memory.

Operator: a character

that represents a

mathematical, arithmetic

or logical operation.

Identifier: a lexical

token that names the

language’s entities.

Declaration: a

language construct

specifying the properties

of an identifier.

+ Initialization:

assigning an initial value

to a data structure.

How can we apply programming to solve problems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B2.1.1 Construct and trace programs using a range of global and local variables of various

data types

> B2.1.2 Construct programs that can extract and manipulate substrings

B2.1.1 Variables

Converting an algorithm into code involves using variables to store and manipulate data,

loops to repeat instructions, and selection structures to make decisions on a path to follow to

complete a task. Important constructs to understand when developing a program are:

B data storage: the use of variables and constants

B operators: used to manipulate and compare data (mathematical and logical operators)

® selection/branching structures: used to construct decision statements

u iteration: loops to repeat blocks of code: counter-based and conditional looping structures.

B Data storage — use of variables
Consider a sales representative receiving a fixed-base salary, supplemented by a bonus that is

tied to monthly sales performance. This bonus fluctuates from month to month; hence it can

be characterized as variable over time. In fields like Mathematics and Computer Science, the

term “variable” is used to encapsulate such dynamic values.

A variable has an identifier (name) and a current value. Each variable can only hold one value

at a time. Before being used, a variable must be declared and initialized.

Variables
age=5 age=6

X il .

i », old value is overwritten
\

value

identifier N

(variable name) age

Variable declaration refers to specifying the data type of the variable, while initialization refers

to providing it with an inirial value.

B2 Programming

4 Comment: a note

that explains some code,

which will be ignored at

compilation stage.

Data type: defines

the type of value

a variable or data

structure has, and what

type of mathematical,

relational or logical

operations can be

applied without causing

an error.

4 String: a data type

used to represent a

sequence of characters,

digits and / or symbols.

Assignment: to set,

reset or copy a value

into a variable.

Integer: a data type

used to represent a

whole number.

Float: a data type

used to represent a

decimal number.

Double: a data type

used to represent a

decimal number.

B2.1 Programming fundamentals (part 1)

(;Top tip!

In Python, there is no need to declare the variables used. Therefore, for assessment purposes, they

can be mentioned via a comment (a comment is used to provide explanations of code, or notes, to

the developer, but it is removed at lexical analysis stage — it is not necessary during the compilation

of the program, so it will be ignored).

Inquirer: Nurture your curiosity, developing skills for inquiry and research.

Research skills: Research the term “constant” and understand the difference between

constants and variables. Outline those differences and specify when each of them could

be used.

M Data types
The data type tells you what type of value a variable will store and what kind of operations are

allowed on that specific value.

1s the variable going to store a whole number or a decimal number; is it a piece of text or just

a true / false value; or one single character? Every programming language has its own way of

declaring variables.

String

String is used to store a sequence of characters, digits and / or symbols (a text). The text

is written in double quotation marks in Java, while Python can use single or double

quotation marks.

-

1
| Python '

: password ='Bcb@l23"' :

I password ="Bob@l23" 1
1 1

In this example, the password is assigned (becomes) the value Bob@123.

The primitive data types considered for the curriculum are: int, double, char and Boolean.

Integer

Integer (int) is used to store whole numbers (positive or negative integers).

W

w

1]

Il w
m

'S

Decimal
The float and double data types are used to store decimal numbers (double precision). As

double has a higher precision than float, it is safer to use double in your exercises.

Python

Char: a data type

used to represent one

single character, digit or

symbol.

Boolean: a data type

to represent one of the

two possible values: true

or false.

Char

Char is used to store a single character, digit or symbol.

: P
: Java Pl Python

: char at= '@'; : : at = '@’

Boolean

Boolean is used to store one of the two possible values: true or false. So, a Boolean variable

could be used to store such data as whether or not a product is still in stock; whether or not a

person is a male; whether or not a trip has been paid for, and so on.

SR B SRS
H H 1

: Java : 1 Python
H 1

1

1
: boolean a = false; :

Boolean variables are often used to evaluate logic expressions. In code, conditions often need

to be added and, if the condition would evaluate to true, some statements would be executed;

otherwise, different statements would be executed.

Another example of the need for a Boolean variable would be to continue repeating a piece of

code as long as an expression evaluates to true or false, based on the requirements.

Consider the following variables:a = 7andb = 54.

((a<9) and (b=>30)) evaluates to true: if both conditions evaluate to true, the result is

true. 7 is smaller than 9 and 54 is greater than 30 (both conditions are met).

((a=3) or (b<3)) evaluates to true: if either condition is true, the result is true. (The

first condition is true; the second is false.)

Define the term "variable”.

Explain why variables are used in programming.

State three data types used in programming.

Suggest a way to declare a variable in the programming language you are currently studying.

Identify rules and conventions that you could follow when naming variables.

Explain why it is important to choose an appropriate data type for a variable.

N

o
O
o
m

b
R

W

N

-

Identify a situation where you need to change the data type of a variable during the

execution of a program.

8 Identify an example of a common error when using variables and explain how you would

fix it.

9 Explain how the choice of data type affects memory usage and performance in a program.

B2 Programming

10 Evaluate the following Boolean expressionsifa = 8andb = 3:

a E=(a<b)or (a=5)

b E=!({a>=b)

¢ E=(a<8)and (b>3)

d E=(a==8)

e E=!(a==Db)or(a>b)

11 Identify the most appropriate data type to store:

a your name

b your age

¢ your phone number

d whether an item is out of stock

e the price of a flight ticket.

12 Identify three legal and three illegal identifier names in the programming language you study.

Construct code to output a joke on the screen.

2 Construct code to ask the user to enter their name, store it in a variable and display it on the

screen, together with a welcome message.

3 Copy the following expressions and display the value of E after each one of them. Check

whether your answers to review question 10 above are correct.

=8

=3

= (a<b) or (a>5)

! (a»=Db)

= (a<8) and (b>3)

(a==8)

[
R

s
N

s
R

e

s
N

&
]

Il

! (a==b) or (a=b)

Use your answers to the programming exercises above to answer the following questions.

1 Did you follow variable naming conventions to solve questions 1 and 2?

2 Were the variable names meaningful and descriptive?

Self-management skills: Set goals that are challenging and realistic: Practise five coding

challenges of your choice per week. This will greatly improve your coding skills, and it

will increase your self-confidence.

B2.1 Programming fundamentals (part 1)

4 Increment: to

increase a value by

another value (usually

by one).

4 Decrement: to

decrease a value by

another value (usually

by one).

Communicators: Express yourself confidently and creatively in many ways. Collaborate

effectively with and listen carefully to the perspectives of other class members.

Communication skills: Use appropriate forms of writing for different purposes and

audiences. Explore and create a table to present to the class the different ranges

available for the data types you have studied.

B Assignments
Assignment refers to setting a value to a variable; this operartion is typically carried out using

the equals sign (=). The value on the right of the equals sign is assigned to the variable on the

left side of the equals sign; it can never be done the other way around.

count = 1

This statement assigns the value of 1 to the variable count. In other words, count is now 1.

But you will often see statements like this: count = count + 1. This statement means that

the variable count is incremented (or increased) by one, or its new value is one greater than

it was. Incrementing a variable by one is a special case, and you can also write it as count++.

If ++ means the variable is incremented by one, decrementing a variable by one becomes

count--orcount = count - 1.

Another example is when you decrease the variable by a value other than one, such as:

5000 price

price price - 100

Here, the variable price becomes 100 lower than it was. So, it was initially 5000, and

after the second line of code is executed the new price is 4900. When assigning new values

to variables, the previous value is overwritten, so the variable occupies the same memory

location. Therefore, in this case, after the two lines of code are executed, the value of 5000 is

completely lost.

As such, a challenging question would be: how do you swap the contents of two variables?

Imagine that you have two variables, a and b, storing the values 5 and 7 in this exact order.

How could you swap their contents, and end up with a storing the value of 7 and b storing the

value of 57

One attempt to solve the problem might be the following:

a=>5

b =17

a=>

b =a

If you have been tempted to do this, what happens is that you end up with two variables

storing the same value; in this case, 7. On line 3, the variable a becomes 7, and on line 4, the

variable b becomes a, which means b becomes 7 as well.

B2 Programming

Therefore, to solve such a problem, you need to imagine that, instead of numbers, you are

dealing with liquids. Imagine that the variable a is a cup that is filled with water, and the

variable b is a cup filled with tea. What you want is to swap the contents of your cups: the water

to get into cup b and the tea into cup a. You cannot mix those contents, so what is the solution?

A third cup! The solution is to bring in a third cup, which will temporarily hold the content of

one of your cups. So, you pour the water into cup c. Cup a is now available to store the content

of cup b, which is the tea. After this step, you can pour the water from cup c into cup b. By doing

this, your contents are swapped successfully. The example below shows you how this works

with numbers:

a=2=5

b=17

temp = a // 5 is saved into the temporary variable temp

a=>b // 7 is stored into a

b = temp // 5 (from temporary variable) is stored into b

Initial state of the variables.

Step 1: content of a is copied

into temp.

B2.1 Programming fundamentals (part 1)

Step 2: content of the

variable b is copied into a.

The content of a is overwritten.

Step 3: content of the

variable temp is copied

into b.

Now the content

of the two variables

a and b is swapped.

4 Arithmetic

operator: a character

that is used to perform

a calculation.

4 Boolean operator:

a character that

represents a specific

logical operation that is

used to produce a true

or false outcome.

Relational operator:

an operator used to

compare values or

expressions.

Although this might seem an irrelevant challenge right now, this swapping method is part of

several sorting routines that you will study later.

B Operators
Operators are used to perform calculations, comparisons and other logical operations.

Operators can be arithmetic operators, such as +, -, /, *, %; or Boolean operators, such as !,

&b |; or relational operators, such as <=, <, >, >=, ==, | =.)

Operator in Java Operator in Python Meaning

+ + addition

- - subtraction

B * multiplication

/ / division

% % modulus (returns the remainder)

< < smaller than

<= <= smaller than or equals to

> > greater than

»= »= greater than or equals to

. == equals to

1= [not equals to

&8 and and

I or or

B2 Programming

Binary operator: an

operator that requires

two operands (values).

Operand: a value

used in a mathematical

expression.

Unary operator: an

operator that reguires

one single operand.

4 Integer division:

division in which

the fractional part is

discarded.

Floating-point

division: division in

which the fractional part

is kept.

B2.1 Programming fundamentals (part 1)

Arithmetic operators are used to perform calculations such as addition, multiplication,

subtraction, and so on. The arithmetic operators presented so far are binary operators,

meaning they require two operands (two values) to apply the calculation on. There are also

unary operators (that require only one operand), such as:

Unary operator Meaning

- negative numbers

++ incrementing the value by 1

- decrementing the value by 1

While it is quite straightforward to understand when you would use the addition, subtraction

or multiplication operators, it might be a bit trickier to understand what the div and mod

operators are.

Div: division operator

In Java and Python, there are two types of division: integer division and floating-point division.

Both types use the same symbol (forward slash) in Java. However, when dividing two integer

values, the result will be an integer (integer division); when dividing two floating-point

number numbers or a decimal and an integer, the result will be a decimal number (floating-

point division).

Java

int nol 7;

int no2 i

System.out.println(nol/no2);
H H

In the example above, even if the result would be 3.5, the answer displayed would be 3, as the

two numbers are whole numbers (integers).

.. e

double nol = 7.0;

double no2 = 2.0;

System.out.println(nol/no2) ;

However, in this example, as both variables store decimal numbers, the result displayed is a

decimal number as well (3.5).

Java

float nol = 7.0;

int no2 = 2;

H

System.out.println(nol/no2) ;

In the example above, the values stored are numbers of mixed data types, and the result will

be a decimal number: 3.5.

(;Common
mistake

Algorithms written

to solve a problem

need to be specific

and accurate. Many

students lose marks for

missing small details,

like forgetting to

initialize a variable such

as a counter or a total.

In Python, as the type of variables is not specified, there are different operators to represent

the different types of divisions. Floating-point division is performed by the / (forward slash)

operator, so the result will be a decimal number. However, integer division uses the // (double

slash) operator. // will return the floor division (this means that, no matter the result, it

will always round it down — what happens is that the decimal part is truncated or, in simpler

words, it is ignored or deleted.

1
]
1
1
1
1
1

no2 = 2 :

1
1
a

(T TTTTTTTTTm T m s e m e h
: Python !

: nol = 7 :

: #nol = 7.0 :

I no2 = 2 1
I 1
1 1
I 1

However, this time the output will be 3, as the result is truncated, without taking into

consideration the data type of the variables.

Construct code in the language of your choice to solve the following problems.

1 Ask the user to enter three numbers. Qutput their average. For example, if the input is: 3, 4 and

5, the output is 4.

2 Ask the user to enter their name and age. Output a message that includes the name and the

age that the user will be in 10 years. For example, if the input is Bob, 15, the output should

be [Bob, in ten years you'll be 25 years old].

3 Ask the user to enter a three-digit number. Output the sum of all three digits. For example, if

the input is 125, the output should be 8.

Use your solutions to the programming exercises above to answer the following questions.

1 Did the correct mathematical operations occur for question 1?

2 How did you concatenate the name and the age to display the output for question 2?

3 Was the expected result displayed for question 3?

Communication skills: Give and receive meaningful feedback — work in pairs to exchange

solutions to the programming exercises and give each other feedback on what could

have been done to improve or optimize the proposed solutions.

B2 Programming

B2.1.2 String manipulation
In coding, there is often a need to manipulate text. You might want to display some special

characters, such as double quotations " ", single quotations ' ' or a backslash \.

As those characters are already used for a specific purpose in most programming languages,

displaying them might be challenging. At the same time, programmers might want to extract

parts of text belonging to a string, join them together, alter or delete them. Iow is all this possible?

Inchuding an escape character (backslash) supports typing special characters that are usually

used for specific purposes in the language. For example, single quotations are used for storing a

character in Java or even a string in Python; the same happens with double quotations. Therefore,

when wanting to include single or double quotations in the text, you must use the backslash:

Character Java and Python

v

v

\ W

B Text blocks
In Java, multiple line strings can be written like this:

¢ Java
System.out.println("Write multiple\n"

i + "Lines like this");

Text on different lines is joined together via the + operator. \n represents the new line

character, denoting that the new line of text will be displayed on the next line.

In Python, multiple line strings can be written by using triple double quotation marks:

Python

print (""" Write multiple

Lines like this
nn Il)

P

-

The programming language offers several built-in functions that can be used to

manipulate strings.

In the examples below, text is a variable that stores a piece of text, such as: “Computer

Science is fun!”

H Length
The length function returns the length (number of characters, spaces included) of the value

stored in the string text. In this situation, the value stored in x is 24.

E Python
1

|
1
1

x = len(text) :

4 L e et

B2.1 Programming fundamentals (part 1)

Concatenation:

joining strings together.

B Concatenation

Concatenation refers to joining two or more string values together.

Both Java and Python allow several ways to achieve concatenation. One of them is with the +

operator, which will join the two strings together.

. Java :
String partl = "Computer Science is fun";

String part2 = ", isn't it?";

String text = partl + part2;

System.out.println(text) ;

partl = "Computer Science is fun"

text = partl + part2

print (text)

r "

1 1
1 1
1 1
1 1
] 1
: part2 = ", isn't it?" :

] 1
1 1
I 1
1 1
= a

Another function that can be used in Java to concatenate two strings is the function concat:

. Java
String partl = "Computer Science is fun";

String part2 = ", isn't it?";

String text = partl.concat(part2);

System.out.println(text) ;

Note that concatenation is a technique that is applied to a series of string variables, rather than a

combination of strings and integers or decimals. If there is a need to concatenate a combination

of strings and integers, the + operator can be used in Java, or the integer or decimal value can

be converted to a string prior to the concatenation taking place. In Python, the interpolation

operator (%), the str function, str. format or £-strings can be used for this purpose.

String exam = "Computer Science";

int grade = 9;

System.out.println("Your "+ exam + " exam score is " + grade);

i Python: Use of interpolation operator i

: exam = "Computer Science" :

: grade = 9 :

: print ("%$s%s%s%s" % ("Your " , exam, " exam score is ", grade)) :

B2 Programming

Python: Use of str function

exam = "Computer Science"

grade = 9

print ("Your " + exam + " exam score is " + str(grade))

Python: Use of str.format
1
1
1

exam = "Computer Science" 1
1

grade = 9 1

print ("{}{}{}{}".format ("Your " , exam, " exam score is ", :

grade)) :

Python: Use of f-strings

exam = "Computer Science"

1
1
'
1
: grade = 9

1 print (£'{"Your "}{exam}{" exam score is "}{grade}')
1

(‘Top tip!

In Python, if you want to display the content of the two variables without saving it into another

variable, you can simply use the print function, which accepts several parameters separated by

a comma:

P -
1 1
| Python '

: partl = "Computer Science is fun" :

: part2 = ", isn't it?" :

I print (partl, partz) 1
1 1
oo o o e e R R R R e R R e R R R e e R e e e e e e e e e - -

H Substring
substring is the function that is used to retrieve part of the string, for example if you want

to extract the first word or letter in a string, or the text between specific positions in the string,

Note thar the first position in a string is 0.

In Java, the function used tor this purpose is called substring:

Java

String text = "Computer Science is fun";

String part = text.substring(8);

System.out.println(part} ;

By providing one argument to the substring function, it indicates the starting index of the

text to be extracted. In this example, the output would be “Science is fun” as the variable part

will be assigned the value from the string, starting with position 8 until the end of the string.

B2.1 Programming fundamentals (part 1)

String text = "Computer Science is fun";

String part text.substring(8,16) ;

System.out.println(part) ;

Tesesssssasranninnannns PErrT B T T T LT T T T T LT T T TP PPN sessssans :

In the example above, the call of the substring function is passed two arguments. The first

one (8) indicates the starting index (position in string) and the second one (16) indicates the

ending index. The substring produced will be from starting index until the ending index —1.

Therefore, the text produced in this example will be “Science”. This is the case because “S”

is the letter at index 8 and “e” is the letter at index 15. The letter at index 16, which is a space

character, is not included.

In Python, the substring function is often referred to as slicing.

I D o O N . N D . O T R, 000 O i O S g o S, Wy O, O W0, N S N o

i Python i

: text = "Computer Science is fun" :

: part = text[0:1] :

: print (part) :

o o o e e e e e e e e e e e e e e R R e e e e e R e e e R e e e e e e R e e e e e e e e e o o

The code above extracts the first character of the text variable: “C".

L ettt -

Python

text = "Computer Science is fun"

part = text[:5]

print (part)

In this case, the part will include the first five characters from the text: “Compu”, as “C” is in

position 0 and “u” in position 4.

i Python i

: text = "Computer Science is fun" :

: part = text[-1] :

: print (part) :

L I I |

Because the index is —1, this piece of code will store the last character into the string part; in

this case, the letter “n”.

Python

text = "Computer Science is fun"

part = text[-6:]

print (part)

In this example, the last six characters in the string will be assigned to the variable part: “is fun”.

B2 Programming

Python

text = "Computer Science is fun"

text [1:-4]

print (part)

part

Above, the extracted text will start at index 1 and will end at the last index —4. So, the value

stored in the variable part is “omputer Science is”.

B Replace
The replace method searches a string for a character or set of characters and replaces it or

them with another character or with other characters.

System.out.println(text) ;

Java i

String text = "Computer Science is fun";

text = text.replace('e', '@');

In Java, the replace method will replace one single character, so the text now becomes

“Comput@r Sci@nc@ is fun”. To replace several characters, the replacefll method should

be used.

Java

String text = "Computer Science is fun";

text = text.replaceAll("is", "will be");

System.out.println(text}) ;

In Python, the replace method is used for replacing both one single character and

more characters.

print (text)

P S OO S L D WO O O O S | . L]

] [l
i Python 1
1 1
: text = "Computer Science is fun" :

I text = text.replace("e", "@") 1
] [
1 1
1 1
L Ll

Python

text

text

"Computer Science is fun"

text.replace("is", "will be")

print (text)

B Strip
Sometimes, when reading values from a text file or any permanent storage, you might want to

remove the trailing white spaces. This can be achieved by using the strip method.

B2.1 Programming fundamentals (part 1)

Some versions of Java accept t riminstead of strip for the same purpose:

: Java

! String text = Computer Science is fun ! " :

text = text.trim();

System.out.println(text) ;

The leading and trailing spaces will be removed, therefore the new text that will be output is:

“Computer Science is fun !”

To achieve the same output in Python, you can use the st rip function:

text = " Computer Science is fun ! "

text = text.strip()

print (text)

(®Tok
How does knowledge in Computer Science develop?

Knowledge in Computer Science develops through a dynamic interplay of various Ways of Knowing

and Areas of Knowledge. Logical reasoning and empirical evidence form the backbone of technical

advancements, while intuition, creativity and ethical considerations shape the broader impact and

direction of the field. The interdisciplinary nature of Computer Science ensures that it continually

evolves, influenced by and influencing other domains of knowledge. This multifaceted development

makes Computer Science a rich field for TOK debates, highlighting the complexity and depth of how

knowledge grows and transforms within it.

Is Computer Science knowledge primarily objective, grounded in mathematical truths and

empirical data, or does it also encompass subjective elements, such as user experience and ethical

considerations? How significant is intuition in developing new algorithms or systems? Can purely

logical and empirical approaches lead to all breakthroughs, or is there a place for creative intuition?

1 Construct code that asks the user to provide their name, house / flat number and their street

number or name.. Concatenate this information to display a message such as the following.

(Attempt to write the message by using one single line of code, and ensure it is displayed on

two separate lines, as shown.)

From: Name

Address: Full Address

Message:

Why was there a bug in the computer?

Because it was looking for a "byte” to eat!

2 Construct code that allows the user to enter their first and last names. Concatenate the two

values, add a space in between and display the full name together with its length without

the space.

3 Construct code that allows the user to enter a noun and a letter. Replace all occurrences of

that letter with the @ symbol.

B2 Programming

Programming constructs

Sequence: to

execute instructions

one after another in the

given order.

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B2.3.1 Construct programs that implement the correct sequence of code instructions to

meet program objectives

P B2.3.2 Construct programs utilizing appropriate selection structures

» B2.3.3 Construct programs that utilize looping structures to perform repeated actions

» B2.3.4 Construct functions and modularization

B2.3.1 Sequencing
When solving problems, the order in which the statements are executed matters. Taking the

swapping example in section B2.1, if you were to change the order of the instructions it would

produce an incorrect output:

a =>=5

b =7

a=>b // 7 is stored into a

temp = a // 7 is saved into the temporary variable temp

b = temp // 7 (from temporary variable) is stored into b

Here, even if they are the same statements, the result will be incorrect just because they are not

in the right order. In this example, in the end both variables, a and b, will store the value 7. As

such, no swapping occurred, even if a temporary variable was introduced exactly as was done

in the correct algorithm.

Sequence refers to the instructions being executed once and in the exact order they are written.

Tollowing the right order of the instructions is important in programming, as this impacts the

outcome, which could lead to incorrect functionality (as demonstrated above), logic errors or

infinite loops.

B2.3.2 Selection structures

B Selection or branching structures
Selection is a programming construct used to decide what statement(s), if any, are to be

executed based on one or more given conditions.

Conditions are usually built using logic operators. IF statements are an example of selection

or branching structures. The condition in the IF statement is evaluated: if it evaluates to

true, specific statements are executed; otherwise, nothing happens, or other statements

are executed.

B2.3 Programming constructs

condition

False True

statement 3 statement 1

statement 4 statement 2

)
M IF statements flowchart

In this flowchart, if the condition is met, statements 1 and 2 will be executed; otherwise,

statermnents 3 and 4.

IF condition THEN

END IF

B General structure

condition Yes

statement

M Selection statement flowchart

In this case, nothing happens if the condition is not met. As an example, this structure could

be used in a situation where a buyer receives a discount of 20 per cent if their purchase value is

100 or more. As such, if their purchase value is below 100, nothing happens.

B2 Programming

Java

private static Scanner read;

public static void main(String[] args) {

read = new Scanner (System.in) ;

double purchaseValue, discount;

discount=0;

System.out .println("enter value of goods purchased: ");

purchaseValue = read.nextDouble () ;

if (purchaseValue>=100)

discount = purchaseValue * 0.2;

System.out.println("Your discount is: " + discount);

H :

In this example, the purchaseValue and discount variables have been declared as

double because they are meant to store an amount of money, which could be a decimal value.

As the discount is only calculated if the condition is met, we had to initialize it to 0 in the

beginning, so there is a value to display if no calculation occurs. The indentation inside the

IF statement in the Python below shows what instruction is going to be executed when the

condition is met. In Java, the indentation is replaced by curly brackets and, if those are missing,

then the next line will be interpreted as belonging to the selection statement. Therefore, the output

statement will be run independently of the given condition, as it is not included in the IF statement.

e e e e e e e e e e e R e e R e R R R e e e e e R e e e e e e

Python
discount = 0

if purchasevValue>=100:

discount = purchaseValue * 0.2

r

]
]
1
]

: purchaseValue= float (input ("Enter the value of your goods:"))
]
1
]
]
I print ("Your discount is ", discount)
]
[o

o

o

In Python, there is no need to declare the variables, so only the discount variable is

initialized to 0. However, the input value is converted to £loat, to ensure the user will enter a

decimal number (integers are included into the range of decimal values). If the float conversion

did not happen, the user’s input value would be a text, and this would throw an error when

attempting to use it in calculations.

You can further expand this code and include a variable to store and display the due amount:

: Java :
E double purchaseValue,toPay, discount; E

i toPay=0; |
i System.out.println("enter the wvalue of your goods: "); i

E purchaseValue = read.nextDouble () ; E

i if (purchasevalue>=100) { :

E discount = purchaseValue * 0.2; E

i toPay = purchaseValue - discount;]

! System.out.println("You need to pay: " + toPay); i

B2.3 Programming constructs

In the example above, you need the brackets to indicate that both calculations will happen

only if the condition is met.

toPay = 0

purchaseValue= float (input ("Enter the walue of your goods:"))

if purchaseValue>=100:

discount = purchaseValue * 0.2

toPay = purchaseValue - discount

print ("You need to pay: ", toPay)

In Python, the indentarion replaces the brackets, so they are not included.

The IF statement can be further expanded to include an ELSE. The statements corresponding

to the ELSE are the statements that will be executed if the condition evaluates to false instead.

IF condition THEN

ELSE

END IF

M General structure

No Yes

statement 2 statement 1

N

M Selection statement flowchart

Java

if (purchasevValue>=100) {

toPay= purchaseValue * 0.8;

} else {

toPay = purchaseValue;

}
System.out.println("You need to pay: " + toPay);

B2 Programming

Note that the brackets can still be used even if only a single instruction is included in the IF or

purchaseValue= float (input ("Enter the value of your goods:"))

ELSE part.

'
' Python

: toPay = 0

1

: if purchaseValue>=100:

: discount = purchaseValue * 0.2

: toPay = purchaseValue - discount

| else:

: toPay = purchasevValue

: print ("You need to pay: ", toPay)

As you may have realized, the block of code can even be further expanded to include another

I statement inside the current one. (One IF statement inside another is called a “nested IF".)

IF condition THEN

IF condition 2 THEN

ELSE

ENDIF

ELSE

END IF

M General structure

statement 3

condition 1

o

statement 2

Yes

statement 1

—
L

7
M Nested IF flowchart

B2.3 Programming constructs

Java

boolean member = false;

toPay=0;

System.out.println("do you have a membership card(true/

false): ");

member = read.nextBoolean();

if (purchaseValue>=100) { :

: if (member == true) { i

discount = purchaseValue * 0.2;

toPay = purchaseValue-discount;

} else {

toPay = purchaseValue*0.9;

}
} else {

toPay = purchaseValue;

¢ System.out.println("You should pay: " + toPay);

In this case, a new variable was included that will decide whether the discount is 20 per cent

or 10 per cent, depending on whether or not the buyer is a member. Also, observe that, as there

is no requirement to display the discount value, you could have calculated the due amount by

simply multiplying the purchase price by 0.9, thus applying the discount of 10 per cent.

toPay = purchaseValue

print ("You need to pay: ", toPay)

i g gy iy Sy S
1 1
i1 Python i
1 1
: toPay = 0 :

I purchaseValue= flcat (input ("Enter the value of ycur goeds:")) 1

: member = input("Do you have a membership card (true/false)?") :

: member = eval (member) :

: if purchaseValue>=100: :

: if member == True: :

1 discount = purchaseValue * 0.2 1
1 1
1 toPay = purchaseValue - discount 1

: else: :

: toPay = purchaseValue * 0.9 :
1 . 1 i else: i

1 1
1 1
1 1
1 1
L 4

The value input and stored into the member variable should be a Boolean value. However, if

there is an attempt to check whether the value entered is True or False by using the bool

keyword instead of eval, it will not return the right answer: bool checks whether or not

the string entered is empty and, as the user will write True or False, the value of the variable

member will always be True as the string is not empty. Therefore, the eval function is used

in this situation, to ensure the value entered is evaluated to True or False and then stored

into the member variable.

B2 Programming

However, there is another way of solving this problem, by using the and logic operator in

the condition.

if (purchaseValue>=100 && member==true) {

discount = purchaseValue * 0.2;

toPay = purchaseValue-discount;

} else if (purchasevValue>=100 && member==false) { ;

toPay = purchaseValue*0.9;

} else {

toPay = purchaseValue;

!
System.out .println("You should pay: " + toPay);

.. Baessssasasssitstisisntattn

In the example above, both conditions should be met (to be a member and purchase value to be

100 or above) for the discount of 20 per cent to be applied. The second condition is checking

whether both conditions are met again, but this time they should have a purchase value of 100

or above, but not be a member. The statement executed on the else branch is the statement

happening if the purchase is not 100 or above.

I, o, i i s s S 1 L]

E Python i

: toPay = 0 :

: purchaseValue= float (input ("Enter the value of your goods:")) :

I member = input ("Do you have a membership card (True/False)?") 1

: member = eval (member) :

: if purchaseValue>=100 and member==True: :

: discount = purchaseValue * 0.2 :

: toPay = purchaseValue - discount :

| elif purchaseValue>=100 and member == False: !

: toPay = purchaseValue * 0.9 :

: else: :

: toPay = purchaseValue :

: print ("You need to pay: ", toPay) :

o R R R R R R R e e R R e e e e e e e e e e me em ee ee o

In Python, else if isreplaced by the keyword elif.

Conditions can use other logic operators, such as OR and NOT.

In case you wanted the discount to be applied if the purchase value was 100 or above or the

buyer owned a membership card, the OR operator would replace the AND operator in the

condition above, for example:

[1
: Java i Python 1
H (I 1

if (purchaseValue>=100 || member) : 1 if purchasevValue>=100 or member: 1
g 1

B2.3 Programming constructs

As in the example above, a comparison with a true value can be written by using the

conditional statement if, followed by the variable that needs to be evaluated to true:

if (member)

This will evaluate to TRUE if the member stores the value true, and to FALSE otherwise.

Therefore, the expression if (! member) inJavaor if not member: in Python would

return TRUE if the member variable stores a value of false, and it would return FALSE if the

variable stores true; this expression being read as if not member.

Other relational operators can be part of the comparison, such as: ==, 1=, <, >, <=

Because = is used in assignments, == is used in comparisons to check for equality.

1 Construct code to let the user input their favourite food. If the user enters pasta, PASTA or

Pasta, output the message “Go to Italy”. Otherwise, output the message "[favouriteFood]

will never replace pasta!”

2 Construct code that requires the user to input a number and a Boolean variable £1ag. If the

flagis true, output double the number. Otherwise, output the squared number.

3 Retirement ages differ for men and women. In some countries, women can retire at the age

of 62 and men at 65. Construct a program that asks the user to enter their name, gender and

age. Calculate and output whether the user is eligible for retirement, or how many years they

need to wait to get their pension.

4 Construct a program that requires the user to enter the measurements of the sides of a right-

angled triangle. Calculate and display its area.

5 Construct code to create a calculator that converts temperatures between Celsius

and Fahrenheit.

6 (Construct code to create a quiz that asks the user to guess the capital city of five different

countries of your choice. Add a score to your quiz. At the end, display the right answers for

the missed questions and the score.

7 Construct a program that asks the user to enter their favourite colour and their lucky number.

If their favourite colour is green and their lucky number is between 4 and 7, output the

message “In [LuckyNumber] years, you'll buy a [colour] bicycle”. Otherwise, if the lucky

number is below 4 and above 1, output the message "I suppose you wanted a [colour]

ball [LuckyNumbex] years ago”. Otherwise, display the message *[LuckyNumber] is not

50 lucky!”

8 Construct code that requires the user to input two numbers. Compare the two numbers

and output the larger one. If the two numbers are the same, output an appropriate

message instead.

B2 Programming

(®Tok
How does reasoning affect decision-making?

Reasoning involves analyzing, evaluating and drawing conclusions from given facts, data and

processes between them. Those are important skills in making effective decisions, as they allow you

to clearly define problems and goals, by selecting the relevant details and ignoring the unnecessary

ones, analysing possible solutions, generating ideas and proposing efficient solutions.

The word “decision” cames from the Latin decidere, meaning "to cut off”. In order to make a

decision you need to consider and cut off alternative solutions. Reasoning plays a critical role in first

identifying available options and then evaluating their consequences. However, decision-making

often involves a blend of reasoning and other factors that may constrain rationality, such as biases

and emotions.

In exploring the role of reasoning in dedision-making, discuss the importance of logic, analysis,

critical thinking, problem-solving techniques, acquired skills and purpose in reaching well-informed

and effective conclusions.

Thinkers: Use critical and creative thinking skills to analyse and take responsible action

on complex problems. Exercise initiative in making reasoned decisions.

B2.3.3 Loops and iteration
Consider a scenario where you need to display your name multiple times. Initially, you might

achieve this by writing individual print statements for each repetition. However, this approach

quickly becomes cumbersome when dealing with a larger number of repetitions, such as

100 times. Moreover, if you want to repeat the actions based on user input or until a certain

condition is met, manually writing each repetition becomes impractical. To handle such

situations efficiently, loops come into play.

Loops provide a way to execute a block of cade repeatedly, either for a predetermined number

of iterations or until a specific condition is satisfied. Whether you know the exact number of

repetitions in advance, or need to iterate dynamically based on runtime conditions, loops offer

a flexible and concise solution.

Loops are used to repeat different instructions or blocks of code. One loop refers to one

repetition. There are several types of loops, such as count-controlled loops (FOR loops) and

conditional loops. Conditional loops can be pre-condition loops (WHILE loops) or post-

condition loops (REPEAT-UNTIL loops).

B Count-controlled loop
A count-controlled loop (FOR loop) is used when the number of repetitions is known in advance,

prior to the execution of the code. For example, if you need to write all the numbers between

1 and 100, before writing any code it can be said that the program will repeat 100 times.

loopifrom0Oton

end loop

M General structure

B2.3 Programming constructs

True

statement

False

i=i+1

B Count-controlled loop flowchart

If n is the number of repetitions required, a FOR loop would look like this:

Python

for i in range (0,n):

#code to be repeated

for(int i = 0; i<n; i++) {

//code to be repeated

}

In Java, i = 0 is the starting point of the repetition, so 1 is initialized to 0. 1<n is the

condition to be met so, when 1 is no longer smaller than n, the repetition will stop. As the

variable 1 was initially 0 to avoid running the code to infinite, the value of i needs to be

changed with every reperition. In this case, i is incremented (i++).

In Python, the range indicates the initial value of i (in this case, 0) and the ending value of i

(in this case, n). Note here that the code will stop when i becomes n-1. For example, ifn =

5, 1 will take the values of 0, 1, 2, 3, 4. There are five repetitions in total; when i reaches the

value of 5, the repetition will stop and so the value won't be displayed.

In the example above, because the starting point is 0, which is the default value, the statement

could have been written as for i in range (n) : and it would have had the same effect.

In both Java and Python, the starting point can be changed. Consider that you must display all

the numbers between 1 and 100. To solve this problem, you can set the starting point to 1 and

the ending point to 101, ensuring 100 is also included.

1
. 1 Python

for(int i = 1; i<101; i++) { : for i in range (1,101):

i
1
-

print (i)

1
1
1
1

: -) 1
8 System.out.println(i); 1
: 1

Ll - e e

Fesssssnsssssassssasnnnes rerransanas sessssssssssasanarsrnnnrans

B2 Programming

The Java example could have used the less-than-or-equal-to sign in the condition to ensure the

upper bound of 100 is included. Alternatively, the loop could have been maintained to iterate

from 0 to 100, with the printing statement adjusted to display the value of 1+1 instead.

vemmte T M A R A TP I R U PN v

: Java ' Python :
for(int 1 = 1; i<=100; i++) { : for i in range (100): :

System.out.println(i); 1 print (i+1) 1
1 1

} o e e e e e e e -

Imagine wanting to display all the odd numbers between 1 and 100. A solution would be to

keep the same structure as before, but to check whether or not the number is odd.

T e——— i g ' T 3 e -

¢ Java E Python i
for(int 1 = 1; i<=100; i++) { i : for i in range (1,100): :

if (i%2 == 1) { : if (1%2 == 1): L

System.out.println(i); 1 print (i) 1

} o i A S SR T ST H
}

i%2==1 checks whether the remainder of division by 2 of the variable i is 1. In other words,

if there is a remainder, the number is odd; if there is no remainder, the number is even.

The same problem can be solved without the need to use an IT statement. A step can be

included to change the incrementation so, instead of incrementing the value of i by 1, which is

the default value, it increments it by a ditferent value.

R Y PP e e T

Java . 1 Python i
for(int i = 1; i<=100; i=i+2) { : for i in range (1,100,2): :

System.out.println(i); | print (i) 1

} A ———— :

In this situation, in Java, the increment was changed, so the value of i is increased by 2, and in

Python a step was included: 2, to specify the same thing. So, the variable i will take the values:

1,3,5,...99

But what if you are requested to display the numbers from 100 to 1 instead?

[e N RGeS v

: Java ' Python :

i for(int i = 100; i»0; i=i-1) { : : for i in range (100,0,-1): :

H System.out.println(i); 1 print (i) 1
H | 1
E } T —— a

B2.3 Programming constructs

Termination

condition: a condition

in a loop that interrupts

or stops the repetition.

Validation: a process

to ensure input data is

sensible or reasonable.

Verification: a

process to ensure input

data is accurately copied

from one source to

another.

In Java, the starting point is set to 100, so that value is displayed first. The condition is

changed, as you want to repeat as long as the value is greater than 0, and also the step is

changed to decrement the value instead of incrementing it. i=1-1 could be written as i--.

In Python, the range is changed to start at 100. It should stop when it reaches 1 (0 is not

touched) and the step is set to —1, so the number is decremented by 1.

B Pre-condition loop

-0

loop while

i=1+1

end loop

M General structure

l
initialization

True

EFalse statements

'
M Pre-condition loop flowchart

A pre-condition (WHILE) loop is used when the number of repetitions is not known prior to

the execution of the code. The code is expected to be repeated as long as a condition is met, or

it evaluates to true.

When the condition is no longer met, called termination condition, the loop execution will

stop. In a WHILE loop, the repetition might not run at all; this happens when the condition is

never met. WHILE loops are loops that are often used for validation or verification purposes.

For example, when the user is asked to enter a password twice, the computer will compare

the two entries to check if they match (double entry verification). In this case, a loop would be

used to repeat entering the password until the two inputs match.

B2 Programming

Java

String password, pass;

password = "apple";

System.out.println("Re-enter the password:"); $

pass = read.nextLine();

while (! password.equals(pass)) {

System.out .println("Re-enter the password:");

pass = read.nextLine();

}
System.out.println("The two passwords matched");

........... T T L I T ey

In this case, .equals is used to compare the value stored in password with the one stored

in pass, as those two values are of type string. If the two values were numbers, then ==

would be used for comparison. The ! is a negation, therefore, in this case, it is checking if the

two values are not the same, and the user is asked to re-enter the password until the two values

match. The outpur at the end will be displayed only after the loop is exited. If the second

password never matches the first, the code inside the loop will continuously repeat.

Any FOR loop can be rewritten as a WHILE loop. Considering our example that displays all

the numbers between 1 and 100, using a WHILE loop the code would look like this:

Java E Python i

int i = 1; : i=1 :

while (i<101) { : while(i<101): :

: System.out .println(i); : print (i) :

i = i+1; : i=i+1 :

In the example above, the loop will repeat as long as i is smaller than 101. The termination

condition will be that 1 >=101. The role of the incrementation is to change the value ot i, so

the loop will stop at one moment. Otherwise, without that statement, the loop would run

to infinite.

B Post-condition loop

i=0

repeat

i=i+1

until i >=n

M General structure

B2.3 Programming constructs

statements

i=i+1

Yes

l
M Post-condition loop flowchart

In the post-condition (REPEAT-UNTIL) loop, the condition is checked at the end. In this case,

the code inside the loop will execute at least once.

Both in Java and Python, post-condition loop structures are written using WHILE loops.

Java i Python i

int 1 = 1; : i=1 :

do { : while (True) : :

System.cut.println(i); : print (i) :

i= di+1; - i=isl :

: } while(i<=100); i : if i-100: :

B R e e e e e 1 break 1

R |

In the example above, the variable 1 is initially set to 1. This value is displayed and then

incremented. This happens no matter what the condirion evaluates to. If the condition

evaluates to true, the loop is repeated; if the condition evaluates to false, the repetition stops.

B2 Programming

Define the term “loop”.

Explain why it is useful to use loops in coding.

Explain the difference between a pre-condition and a post-condition loop.

Identify a situation when you would use a count-controlled loop.

Define the term “termination condition”.

Explain why it is important to avoid infinite loops.
N
o
n

A
R

W

N

=

Identify a situation where an infinite loop could occur.

1 Construct a program that allows the user to enter a number. Output all numbers between 1

and that number.

2 Construct code that requires the user to enter a number and a word. Display each letter in

the word on a separate line. Repeat the process the user's number of times.

3 Construct code that asks the user to input ten numbers. Calculate and display the sum of all

even numbers entered.

4 Construct a program that creates a variable and initializes it to the value 7. Ask the user to

guess a number between 1 and 20. If the user guesses the value 7, output the number of

attempts. Do not allow the user to try to guess the number more than three times. If the user

doesn’t guess the number after three attempts, output the message: "The game is locked.

Try again later!”

5 Construct a program that asks the user whether they want an apple. Repeat the question

until their answer is yes. At the end, output the message: “Apples are delicious, aren't they?

Let's have one!”

Use your answers to the programming exercises above to answer the following questions.

(.TDP tlp' 1 What loop did you use to solve question 1? Could you replace that loop with another

one? How would you do that?

When you are asked 2 Did the program you constructed to solve question 2 handle user input correctly? Can
to identify the type you think of an easier way to extract each letter from a given word?

of loop exemplified 3 Did your program for question 3 extract the even numbers correctly? What change

in a piece of code, would calculate the sum of all the odd numbers instead?
refer to them as 4 Why do you think a FOR loop is not appropriate for solving question 4?

count-controlled, 5 What termination condition did you use for question 57
pre-condition or post-

condition loops. For

e S (® Key information
a FOR loop instead of
a "count-controlled” FOR loops are called "count-controlled” loops, WHILE loops are called “pre-condition” loops and

loop is not enough, as REPEAT-UNTIL loops are called “post-condition” loops.

it is not clear that you Count-controlled loops are used when the number of repetitions is known prior to the execution

know what type of of the code. Pre-condition loops might not be executed at all (if the condition is not met). Post-

loop a FOR loop is. condition loops will execute at least once, even if the condition is never met.

B2.3 Programming constructs

Maintainable code:

clear, easy-to-read and

modify code that can be

reused within the same

program or in other

programs, by the same

or other programmers.

@ Procedure: a set of

statements that can be

grouped together and

called in a program

as needed; they don't

return a value.

Function: a set of

statements that can be

grouped together and

called in a program as

needed, they always

return at least one value.

B2.3.4 Functions and modularization

TFunctions represent blocks of code that can be reused in various parts of the program and

include a return value. Using functions makes the code look neater, and it saves development

time as they can be reused as needed. At the same time, they allow for modularity, meaning

multiple programmers can work together, each developing a function and then those functions

can be put together to build up a more complex program. Once a function has been written

and tested, the programmer can reuse it without worrying about its functionality.

Writing maintainable code is an important skill for any programmer. Maintainable code refers

to code that is clear; easy to read and modify; and can be reused by the programmer themself

or by other programmers. Using functions aids in the creation of maintainable code.

Such a reusable block of code is called a procedure or a function; the difference between the

two being the returned value(s). A procedure can take several parameters or none and it has no

return value, so it could update a variable or output a message or a value. However, a function

will return a value. This returned value can further be used in a mathematical expression, or it

can simply be displayed.

Consider the following problem: A user is required to provide two whole numbers. Construct a

program that calculates the sum of the two numbers and displays it.

A simple solution would be to ask the user to enter the two numbers, add them together and

display the result, such as:

Java
read = new Scanner (System.in) ;

: int nol, no2, sum;

! System.out.println("enter nol:");

i nol = read.nextInt(); i

i System.out.println("enter no2:");

(

: (

i (
() no2 = read.nextInt

sum = nol+noz;

System.out.println("The result is "+ sum);

e T

E Python i

: nol = int(input ("enter nol:")) :

: no2 = int(input ("enter no2:")) :

: sum = nol + no2 :

: print ("The result is ", sum) :

e ———————

M Solution 1

But if you needed to perform the same operation again, with different values, you would have

to rewrite the code, which is not very time or memory efficient. Therefore, to complete such

tasks, a procedure is required.

B2 Programming

Java

private static Scanner read;

public static void add() ({

int nol, no2, sum;

System.out.println("enter the first number:");

)i

"enter the second number:");

s
a
s
a
s
s
s
s
s
s
s
r
s
n
n
n
r
e
r
e
n
r
r
r
n
n
n
a
y

nol = read.nextInt

System.out .println

(

(

(

(no2 = read.nextInt/();

sum = nol+no2;

System.out.println("The result is "+ sum);

public static void main(String[] args) {

read = new Scanner (System.in);

add () ; H H

T

T

TR

TR

 T
 T

P
TP

 T
PP
 T
P

R
T

TT
 T
P

Y

H H H : H H H H H H H H H H H H H H H

Python

def add():

nol = int (input("enter nol:"))

no2 = int(input("enter noZ2:"))

sum = nol + no2

print ("The result is ", sum)

add ()

M Solution 2

Because this does not return the sum, but only prints it, it is a procedure.

Java

private static Scanner read;

public static void add(int nol, int no2)

int sum;

sum = nol+no2;

System.out.println("The result is "+ sum);

}
public static void main(Stringl[] args) {

read = new Scanner (System.in);

int valuel, value2;

H H
H
H H H H

H

System.out.println("enter the first number:");

valuel = read.nextInt();

System.out.println("enter the second number:");

value2 = read.nextInt ()

add (valuel, wvalue2);

H H

H

H

B2.3 Programming constructs

Python

def add(nol,no2):

sum = nol + no2

print ("The result is ", sum)

valuel = int (input ("enter nol:"))

value2 = int(input ("enter no2:"))

add (valuel, value2)

M Solution 3

In the code above, the same procedure is created, but two parameters are passed to it {(nol

and no2). When the procedure is called in the main program, the values being passed to it are

called “arguments” (valuel and value2).

When a return is added to the block of code, the procedure becomes a function. The returned

value can be displayed on the screen or used in other mathematical expressions. The number

of parameters also differs when it comes to functions: one, none or more parameters can be

passed to a function.

When implementing functions in Java, the void keyword from the method signature is

replaced by the data type of the value being returned.

. Java :
: private static Scanner read; i

public static int add(int nol, int no2) {

int sum;

g sum = nol+no2;

E return sum; ;

public static void main(Stringl[] args) {

read = new Scanner (System.in);

int valuel, value2;

System.out.println("enter the first number:");

valuel = read.nextInt();

System.out.println("enter the second number:") ;

value2 = read.nextInt();

System.out.println("The result is "+ add(valuel, value2));

int newVal = 3;

newvVal = newVal + add();

System.ocut.println("The new value is "+newVal) ;

B2 Programming

Python

def add(nol,no2):

sum = nol + no2

return sum

valuel = int (input("enter nol:"))

value2 = int (input("enter no2:"))

print ("The result is ", add(valuel, wvalue2))

newVal = 3

newVal = newVal + add(valuel, wvalue2)

print ("The new value is ", newVal)

In the example above, the function add will return a value of data type integer.

The function is called once to be displayed and the other time to increase the value of the

variable newval.

Compare functions and procedures.

Identify three things you can do to keep a maintainable code.

3 Qutline the difference between validation and verification. Provide an example where a

selection can be used for validation checks.

4 Differentiate between pre- and post-condition loops.

1 Construct code to let the user create a function called factorial that takes a natural

number (n) as a parameter. The function should return the factorial value of that number (n!).

2 Construct a program that consists of a procedure called odds that takes a natural number (n)

as a parameter. The procedure should display all the odd numbers from 1 to that number (n).

3 Construct code that creates a function called perfect that takes n (a natural number) as a

parameter. The function should return true/false if n is a perfect number.

A perfect number is a positive integer that is equal to the sum of its positive proper divisors,

excluding the number itself. For example, 28 is a perfect number as its proper divisors

are: 1, 2,4, 7, 14. Adding those values together we get 28, and this result is equal to the

initial number.

4 Construct a function called palindrome that takes a word as a parameter. The function

should return true/false if the given word is a palindrome.

A palindrome is a word that reads the same forwards or backwards. For example, kayak,

racecar, level and civic are all palindromes.

Reflect on the errors you encountered when constructing your code, and how you resolved them.

B How did you go about debugging the issues?

B Did you notice any patterns in the errors you encountered?

B What can you do to avoid such errors in the future?

B2.3 Programming constructs

Local variable: a

variable that exists only

within the block of code

where it is defined.

Global variable:

a variable that exists

throughout a program.

4 Variable scope: the

lifetime of a variable

within a program; it

determines whether you

can access and maodify

the variable within a

specific block of code.

B Scope of variables
Based on their scope, variables can be classified into various categories, such as local or

global variables.

The scope of the variable defines its lifetime in the program, meaning the block of code where

it has been declared, where it can be used and modified. How and where the variables are

declared detines the scope.

Local variables

Local variables are variables that have their scope limited to the block of code within which

they are declared and used.

Once that block of code is executed, the variable is automarically removed from the memory.

It is recommended to use local variables as often as possible. An example of a local variable

is when using a counter in a FOR loop. That counter is required only within the body of the

loop for storing temporary data but, once the loop is finished, you do not need that counter

any longer.

¢ Java: i is a local variable

for(int i=0; i<3;i++) {
System.out.println("helloc world");

T P T PP srrrrrsnrens srrrrssnrane B L R TP PR TP PP CETTRYS sarasrsanans s

As i is a local variable, it exists within the loop, and it will take values trom 0 to 3. When it

reaches 3, the variable is no longer smaller than 3 and the repetition will stop. After this loop,

the variable i does not exist any longer.

Python: text is a local variable

def hello():

text is the local wvariable

text = "hello world"

print (text)

code to text

hello()

the print below will throw an error as text does not exist

outside the procedure

print (text)

In this example, text is the local variable. When printing the variable text inside the

subprocedure, the message “hello world” will be displayed. However, when attempting to print

the text again, after the call of the method, an error will be thrown as text is used without

having an initial value.

Global variables

Global variables are variables that are visible and accessible throughout the program.

In Python, the global variables are initialized at the top of the code or module and, whenever

they are used within a function or procedure, they are declared as global. As Java is an

B2 Programming

object-oriented programming language, it does not use the concept of global variables.

However, by using the static or static final keywords, the variables can have all the

properties of global variables.

Python

text = "hello "

def hello():

text is a global wvariable

global text

text is concatenated with a new text wvalue

text = text + "world"

Driver code

hello()

print (text)

B e L T L L e

In this example, the text is a global variable, which means that, by calling the hello

procedure, the content of the variable text is changed and, once it is printed, even if it is

printed outside the procedure, it will display the updated content: hello world.

(.-Top tip!

When writing code, aim to preponderantly use local variables rather than global variables. Local

variables are confined to the function or block in which they are dedared, promoting encapsulation

and modularity. This makes functions self-contained and easier to understand, test and debug.

Global variables can be madified by any part of the code, leading to unintended side effects that

can make the program behaviour difficult to predict and debug. Local variables prevent such side

effects by limiting the scope of variable modifications.

1 Trace the following program to determine its output.

}
public static void main(String[] args) {

. Java
static String student = "Bob";

public static void changeOfName (String st) {

System.out.println("Student inside the method: "+st);

changeOfName (student) ;

System.out.println("Student outside the method: " +

student) ; }

B2.3 Programming constructs

student = "Bob"

def changeOfName (st) :

st = "Bobby"

print ("Student inside the method: ", st)

changeOfName (student)

print ("Student outside the method: ", student)

Identify a local variable in the code above. Explain why the chosen variable is not a

global variable.

Construct a program that changes the code above so that, after the method is executed,

both outputs display the name lim, without changing the first line of code.

Construct code to update the method above to include a validation check: the new name

should be input from the keyboard and the change should occur only if the new name is

different from the previous name. Display a message if the new name is not different and

display the current name.

Identify the scope and data type of the variable you have created to validate the

name change.

B2 Programming

Programming fundamentals

(part 2)

Logic error: an error

in a program that makes

it operate incorrectly;

it will not crash the

program.

Runtime error: an

error that occurs when

executing a program,

the program might stop

unexpectedly.

Exception handling:

a process of responding

to an exception, so the

system does not halt

unexpectedly.

Exception: an

unexpected event that

stops the execution of

a program, e.g. division
by 0.

B2.1 Programming fundamentals (part 2)

How can we apply programming to solve problems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

P B2.1.3 Describe how programs use common exception handling techniques

» B2.1.4 Construct and use common debugging techniques

B2.1.3 Exception handling
‘When a computer program is run, different reasons or events might cause the program to halt

or produce an unexpected outcome. These reasons could include logical errors in the code,

unexpected user inputs or resource unavailability.

Logic errors refer to incorrect sequences in the logic of the program, incorrect choices of

condition or incorrect calculations. For example, when attempting to calculate the average of

three numbers, dividing the sum of the three numbers by 2 instead of dividing it by 3 would

produce an incorrect outcome.

Such errors can only be detected through testing, as they would pass the compilation stage.

Runtime errors could cause the program to crash. These errors refer to problems occurring

as the program runs, such as division by 0; a file not being found; truncation; overflow or

underflow errors; a hardware device not being available, such as a printer not being ready; or a

class tile not being found.

Also, a user can enter unexpected inputs, such as entering text instead of a number or entering

values that would lead to an attempt to divide by 0, or entering the wrong file location to read

data from or write data to.

Resource unavailability refers to hardware and software equipment not being available for the

operation, such as a file not being found or a printer not being ready for the operation.

All those events can be dealt with, so the program does not crash, using exception handling.

Even if the desired operation would not be achieved, the user can get an idea of what went

wrong, and they can continue attempting other features of the program.

The role of exception handling techniques is to maintain the normal flow of the program, by

catching and throwing exceptions that cannot be handled locally. In Java, this takes the form

of try/catch blocks, while in Python they are found as try/except blocks. The code

that might throw an error is written within the try block and the exception is caught and

displayed, if needed, in the catch/except block. Both languages allow for a finally block

that is found at the end of the try/catch or try/except block and this includes code

that will always execute after leaving the try statement, regardless of the try block outcome:

whether or not it raises an error.

Java

int number = read.nextInt();

int result;

try {
result 10/number;

}

read = new Scanner (System.in) ;

System.out.println("Enter a number:

System.out.println(result) ;

E catch(Exception e) {

E System.out.println(e.toString());

! finally {
System.out.println("This would be printed anyway");

}

P

; Python

i number = int (input ("Enter a number:

I try:

: result = 10/number

: print (result)

: except ZeroDivisionError:

: print ("You can't divide by zero")

: finally:

: print ("This would be printed anyway")

b o o o o o e e e e e e e e e e e e e R R e e e e e R e e R R e e R e e e R e e e e e e R e e e

In the example above, the user is requested to enter a number. If the number entered is 0, then

this would be caught in the exception; otherwise, the calculation will be performed and the

result displayed. Independent of the action completed, the message included in the finally

block will be displayed.

int number = read.nextInt () ;

int result;

try {
result = 10/number;

}
catch(Exception e) {

System.out.println(e.toString());

read = new Scanner (System.in) ;

System.out.println("Enter a number:

System.out.println(result);

B2 Programming

Debugging: finding

and fixing errors in

a program.

Trace table: a

technigue used to test

an algorithm, and to

predict how it will be

run and how values of

variables will change.

Breakpoint: a

marker to interrupt the

execution of code for

debugging purposes.

B2.1 Programming fundamentals (part 2)

Python

r bl

1 1
1 1
1) _ _ 1
I number = int (input ("Enter a number: ")) 1
1 1
1 try: 1

: result = 10/number :

: print (result) :

: except: :

] print ("There was a problem!") 1
1 1
15 4

The exception handling construct can include only a try/catch block in Java, or justa

try/except block in Python. There is no need to specifically indicate the type of error that

might have caused the program to crash, but this is useful to help the programmer debug the

code and fix issues that might be solved or to let the user understand the problem if the wrong

input is provided.

(;Key information

"Exception” refers to the event that interrupts the execution of a program, while “exception

handling” refers to the actions taken to deal with an exception or how the system is prevented

from halting unexpectedly. For example, a division by 0 is an exception; using a try/catch or try/

except block is the exception handling technique.

Explain how exceptions differ from errors.

Explain why it is important to handle exceptions in your code.

Identify some common types of exceptions.

Explain a scenario when a runtime error could occur.

v

A

W

N

=

Explain the risks of showing detailed exception messages to end users.

B2.1.4 Debugging techniques
Debugging refers to finding and fixing errors in code. Common debugging techniques include

trace tables, breakpoint debugging, print statements and step-by-step code execution.

B Trace tables
Trace tables represent a technique usually used at design stage to test an algorithm and predict

step by step how it will run. They can be used to demonstrate the outcome of an algorithm or

to identity logic errors.

A trace table is a table in which the columns represent variables, conditions or an output in the

algorithm. However, not all variables, conditions or outputs are always needed; this depends

on the purpose of the trace table.

Its role is to identify how variables change, what conditions evaluate to and what are

the produced outcomes. By producing a trace table, the purpose of the algorithm can be

determined or any flaws in the algorithm can be detected.

For example, consider the following problem: Students taking a language course will pass

their final examination if their score is 80 or above. As the students register for the course

every term, the number of students is unknown. Therefore, the teacher will enter 999 to

terminate the program. The teacher is required to identify the number of students passing

the assessment.

The following flowchart has been designed to suggest a possible solution to the problem:

count <- 0

i INPUT score ;

w Yes —l

No

score >= 80 Yesj

OUTPUT count, " students have count <- count + 1

passed the exam”

No |

The trace table for the input data would look like this:

23,08, 33, 45, 78, 80, 81, 84, 34,999

count score output

0 23

98

1 33

45

78

80

2 81

3 84

4 34

999 4 students have passed the exam

B2 Programming

When the value 98 is entered, the count is incremented. 33, 43, 78 will not affect the count,

so its value stays the same. You might choose to repeat the previous value for the count

variable, or just leave it blank as there is no change. Be aware if there is a statement reassigning

the value of the variable to something, then even if the value is the same as the previous one,

it should appear within the count column, as that is a change to the variable. When value 80

is entered, the count is incremented again, and the procedure repeats for the values 81 and

84, but nothing happens to the count when 34 is entered. 999 is the value that will terminate

the program, and so the output will be displayed, as the output is displayed only after 999 is

entered, in this example.

The following flowchart represents an algorithm.

il

temp <-0

value <- num

Y

reminder <- value MOD 10

value <- value DIV 10
temp <- temp*10 + reminder

A T

No value > 0

temp = num Yes l

(Y
e

.

QUTPUT false STOP D
J

B2.1 Programming fundamentals (part 2)

1 Copy and complete the trace table below for the value: 1221.

num temp value reminder value >0 temp = num output

2 Copy and complete the trace table below for the value: 1231.

num temp value reminder value > 0 temp = num output

3 Identify the purpose of the algorithm represented by the flowchart above.

B Breakpoint debugging
Breakpoints are special markers that interrupt the execution of the code for debugging

purposes. To set a breakpoint in Eclipse IDE, it is sufficient to right-click on the blue section

beside the line number and toggle a breakpoint as shown in the screenshot below (this differs

from IDE to IDE).

Prmsmse = susms SemEiEs | S
5
78 public static void main(String(] args) {
8 read = new Scanner(System.in);

«: 9 ____System.out.printin("Enter a number: ");

e Disable Breakpoint ©Double Click

@ Toggle Lambda Entry Breakpoint

&< Toggle Tracepoint

=] Run to Line X Click

Go to Annotation

+ Show Quick Diff

+ Show Line Numbers

Folding >

Preferences...

Breakpoint Properties... 3 Double Click

3F
36

M Breakpoint debugging in Eclipse

fways™);

B2 Programming

After setting up the breakpoints, the next step is to run the program in debugging mode. This

is done by clicking on the Debug button (the one next to the Run button), which looks like a

little bug, as shown in the image below.

ene

r3-m- Qinir B 22 e

eclipse-workspace - sum/src/

0-Q-Q- & 4-

15 Debug X () Project Explorer |- | L - | :’m 1 addition [3) mainTe

« [T} addition [Java Application] 1o 71 2 Competitions

wi [Usersfioansganesl.p2jpociipluginsiorg.eciipsejust 2 11 [T] 3 Swimmer

v [T addition [Java Application] : [T 4 mainTester
v sum.addition at localhost:57950 ; :
v of® Thread [main] (Suspended) 6 Debug As >

= addition.main(String[]) line: 10 76 :ringl] arg

4! [Users/icanaganeal.p2/poolpluginsforg eclipse just; & Debug Conflgurations... item.in);
[T addition (Java Application] 29 Organize Favorites... iter a nuab

v {J sum.addition at localhost:57974 }? T TR smmmemedINt)
v @ Thread [main] (Suspended (breakpoint atline 13 5 tew { ’

M Running the program in debugging mode in Eclipse

Next, you can see the Breakpoint window that shows the variables, breakpoints and

expressions, as here:

Q s &%

B) variables X ®g Breakpoints &5 Expressions = Ep

& B §

Name Value

= no method return value

& args String[0] (id=19)
@ number 3

O result 3

[~}

=

M Breakpoint window in Eclipse

The code will execute as normal, but it will interrupt its execution the moment it reaches the

set breakpoint.

B2.1 Programming fundamentals (part 2)

In IDLE (Python), there is only a need to right-click on the line where you want the breakpoint

to be set and choose the option Set Breakpoint.

number = int(input(“Enter a number: "})
| trys

result 5|
print{res CuUI

| except:

print("Th Copy)

Paste

Set Breakpoint

Clear Breakpoint

M Breakpoint debugging in IDLE

After that, you can simply run the script (F5). Once this has happened, you can press Debug

on the menu and the debugger window will appear.

— =

mesber = sntlineuti*Esiee & susters 1)
rerelt = 10/ngmser
srintiresult

SriE"There wet & peablent®)

uni), e 600 sxec|omd, giotals, locals|

e e), e 2 rurmitae = int{input]*Enter & ramber: “})
ran’ writal], bea 467 5 = s3 encodeds, sell encodng weif.

ane *IDLE Shell 3.12.3%
Pythen 3.10.3 (v 12.3:TOASBT00ET, Aor § D024, BR:IB:AT) (Clang 13.0.8 (clang-1
30,0, 9. M1 88 Sarvis
Type “halp™, “copyright™, “credits” or *Licenss(]* for sere informstios,

[maggmoeames WESTART: fUsaras| ta/teat. py Lacais

Ll
Inter & sumberi
3. 3133333333300033% <idbellt run. 1 Be1085af 280>

wee IDESNG oM

M Debugger window in IDLE

B Step-by-step code execution
To monitor and see what happens with the variables, you have to press Step into / Step over

or use Step filters buttons. If you want to check what happens at the breakpoint line then you

would choose the Step into button, but if you want to skip that line and execute the following

one you would choose the Step over button. In Eclipse, those buttons are the arrows shown in

the following screenshot:

5D S B L O Qe
I ™ 0 of aavirwnstion o sososticions [mentovimiens] sttionina X O e vaesies X % Besskpons S Daeessons

I package wum;
1 eioe At ; Ampert java.util.e] oo Voo

4 public class sddition { [7o math o et ewlae
) privete static Scenner resd; o - Saringlt] (=19
7 peblic static weid main(String(] srge) (& At :

pecipresmy | read = svw Scaswer|Systes.{s); o revat 3
- Systen.awt.printin “tater & sumber: =) -
1 st musher = read.nextintily
1 st cesalt;
2 ey {

resalt o U mmber) -

Systes.out.printialresuit);

catohl Laception oM
Systes.out.printiale. vaString());

]
Fisally {
Systen.aet.prlatIn{"This would be printed anmays”);

17
]

e

1

T

W Step-by-step execution in Eclipse

B2 Programming

(; Key
information

You need to be able

to construct and use

common debugging

technigues. Being

able to complete trace

tables is an important

technique that can be

used to test the logic

and functionality of an

algorithm, to identify

how the variables

change throughout

the running of

the program and

to identify the

expected output of

an algorithm.

B2.1 Programming fundamentals (part 2)

H Print statements
‘When testing your code, you might ask yourselt whether the execution of the program has

reached a specific line of code, whether a variable changed its value as expected or whether a

decision statement has been evaluated to true or false. Including print statements into your

code to trace such changes is a useful method that would help you identify when exactly your

code stopped running as expected and give you an idea of what went wrong. The only

impediment might be that, once the debugging has occurred and the errors are fixed, you will

have to delete those print statements.

1 Define the terms “exception” and “exception handling”.

2 Identify three possible causes of an exception.

3 Outline three features that support the debugging of the code in an IDE.

Affective skills: Demonstrate persistence and perseverance. Don't give up when you

realize that coding becomes challenging - use debugging techniques to identify the

errors, focus on understanding the errors report and try different approaches to

solving problems.

(;TOK
Language and meaning

We use different programming languages to code, each with its own syntax and grammar rules.

English is not suitable to be used as a programming language because it is ambiguous and many

expressions can be interpreted differently based on the context in which they are used.

Analyse the following statements and identify the possible meanings of each of them:

B Peter and Anna are married.

B A salesman visited every house in the area.

B Look at that dog with one eye.

What are the essential features of a computer language? Why is there a need for a fixed vocabulary,

unambiguous meaning and consistent grammar and syntax?

Data structures

Static data

structure: a data

structure with

predefined fixed size

and elements stored

in contiguous memory

locations.

4 Dynamic data

structure: a data

structure that can grow

or decrease at runtime,

with elements stored in

memory locations that

are chained together,

but not necessarily

contiguous.

Direct access: a

method of access where

elements are directly

retrieved by using their

index (position).

4 Sequential access: a

method of access where

elements are checked

one after another,

from the beginning to

the end of the data

structure.

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B2.2.1 Compare static and dynamic data structures

P> B2.2.2 Construct programs that apply arrays and lists

» B2.2.3 Explain the concept of a stack as a Last In First Out (LIFO) data structure

» B2.2.4 Explain the concept of a queue as a First In First Qut (FIFO) data structure

B2.2.1 Static vs dynamic data structures
A data structure is a way of storing and organizing data, so it allows for its manipulation in

an efficient way and attempts to reduce the time and space complexity. Arrays, lists, stacks,

queues, binary trees and hash tables are all examples of data structures. Data structures can be

static or dynamic, the two differing in terms of storage and access to their elements.

A static data structure has a predefined fixed size, a specific memory space being allocated to

it, that will not change when running the program, and elements that are stored in contiguous

memory locations. Elements in a static data structure can be either directly accessed or

sequentially accessed.

A dynamic data structure has no predefined fixed size, it can grow or decrease at runtime and

its elements are stored in memory locations that are chained together but are not necessarily

contiguous. Elements in a dynamic data structure cannot be directly accessed.

Static data structure

Advantages Disadvantages

Inefficient use of memory, as there is a need to

know in advance the likely size of the structure to

allocate sufficient memory

® Fast access time, as elements can be directly .

accessed via the index (position of the element in

the data structure)

* No need to deal with possible overflow or * Memory is allocated, regardless or whether or

underflow errors when adding or deleting not it is needed

elements as the size is fixed ® Does not allow for flexibility, as its size is fixed

® Easier to program; there is no need to check on ® Deletion of an element might create a vacant slot
its size at any time between two other elements, and changing the

code to reuse this space might take time

* |nsertion of elements between two other elements

if there isn't a vacant space is time-consuming

Dynamic data structure

Advantages Disadvantages

The programmer needs to deal with overflow

(the structure might exceed the memory limit)

and underflow (it might attempt to delete an
item from an already empty structure) situations

when inserting or deleting elements

* Allows for flexibility — it can shrink or grow as .

needed at runtime (suitable when the size of data

is not known in advance or may change in time)

* Efficient use of memory; as it can resize itself,

there is no memory waste
® Harder to program, as the programmer is required * Insertion and deletion operations are optimal nep !

always to keep track of its size and data allocations concerning time and space complexity

B2 Programming

B2.2 Data structures

B2.2.2 Arrays and lists

Hl One-dimensional arrays (Java) and one-dimensional lists

(Python)
Suppose your teacher wants to store the grades of 100 students. One way to complete this task

is to use 100 variables, but this means lots of memory waste, many lines of code and a lot of

effort. And what if this teacher needs to store 1000 grades?

A better solution is to store all those 100 or 1000 elements under a single name or a single

identifier. The array data structure allows you to do this.

A 1D array (Java) or a 1D list (Python) is a data structure that stores elements of the same data

type, under one single identifier (name). Those elements can be directly accessed by using

an index (plural indices), where the index indicates the position in the array. Some languages

indicate the first index as being the 0 element, and others allow the programmer to indicate

how the items will be addressed.

Tor example, an array of five integers storing students’ grades out of 100 is called grades.

Graphically, arrays can be represented horizontally or vertically.

index (position in array): lower limit: 0, upper limit: 4

ol (1] [21 3] [4)
grades |75|64|95|50|34

64|[1]

grades |95 |[2]

50|[3]

34|[4]

array size: 5

grades[2] = 95

W 1D array (list)

The array element at index 2 (the 3rd element, when counting from 0) can be directly accessed

by using the name of the array followed by the index: grades [2] . Keep in mind that, if the

first element has index 0, the last element is at index 4 (in this case, the grades array has only

five items).

To process arrays, loops are used. Loops can be used to traverse the array; therefore, any time

you perform calculations on all elements of an array, find an element, sort them, and so on,

you will use loops.

One-dimensional arrays (Java)

Array declaration and initialization:

To use arrays in Java, they must be declared, and the language allows for different ways to do

this. First, square brackets [] are used to differentiate between a variable and an array. They

can appear before or after the array name:

int grades []; //an array called grades of integers

int [] grades; //grades array of integers i

After deciding where you want to place the square brackets (most often, the first example is

used), you need to specify the size of the array, as it is a static data structure.

Declaration:

int grades([]l=new int[5]; //grades array can store maximum 5

i //elements :

If the array is of integer or double or float type, and there is no further initialization of the

array elements, Java automatically initializes all its elements to 0.

Initialization:

{ grades[0]=75;

grades[1]=64;

i grades[2]=95;

! grades[3]1=50;

¢ grades[4]=34;

At this point, the elements of the array are given specific values, the value 0 being overwritten.

Another way to declare and initialize the array is like this:

int grades[]= new int[]{75,64,95,50,34};

But this can also be rewritten in a simpler way, like this:

Y e T T PP T prr. wes

int grades[]={75,64,95,50,34};

Sometimes, the developer will have to allow the user to initialize the array. In such cases, you

can simply declare the array and use a loop to allow the user to populate the array.

read = new Scanner (System.in) ;

int grades[]=new int[5];

for(int i=0;i<5;i++) {

: System.out.println("Enter a number: "); :

! int value = read.nextInt();

grades [i] =value;

The loop repeats five times, and it requires the user to enter an integer value that will be stored

into the array indicated by index i (from 0 to 4).

B2 Programming

1f the array is of type string, it would look like this:

String pilots[]= {"Bob", "John", "Elvis"};

Boolean passedExam[] = {true, false, true};

T T T Ty B T T T T T LT TT T T PP T

One-dimensional lists (Python)

Python replaces arrays with lists, but you can manipulate those lists to behave like arrays.

In Python, data structures don't need to be declared. Square brackets are still used to specify

that the data structure used is a 1D list.

For example, the grades array will look like this:

: grades = [75,64,95,50,34] 1

FPmm e e e e e e e e e e e e e e e e e mmm e mm s ————— == 1

: grades = [0]*5 #creates an array of 5 zeros :

: for i in range(5): #repeats 5 times :

: #stores value entered at given index :

: grades[i] = int(input ("enter a value: ")) :

o e e e e e e e M e e e R M R e R M M M e e e e e e o e ww ww owm owwoww o

The first line in the code above specifies the initial value each element in the list will take (in this

case, 0). After the *, it is the size of the list (meaning there are five Os in this list at first).

1f you were to write this line of code as grades = [], when trying the FOR loop an

error would be thrown (index out of range), as the size of the list would be none or zero, so

there would not be a way to add any new elements to it. However, the following statement is

completely valid:

T TTTTTTTT T i
1 grades = [] 1

: grades = [0 for i in range(5)] :
1 1

And this is possible because the grades list is overwritten. But this could have been just

like this:

1
1 grades = [0 for i in range(5)] :
1 1
B o o o o o e - - -

The purpose of the line above is to initialize the grades list to 0 for all its five elements.

The following two lists are examples of a 1D list of type string and a 1D list of type Boolean:

|5 T i T e e e e e s i e Al i

pilots = ["Bob", "John", "Elvis"]

passedExam = [True, False, True]

B2.2 Data structures

T 7 i - th Parallel arrays: a Parallel arrays represent two or more arrays of the same size, such that the n™ element of the

group of arrays of the first array is related to the n™ element of the second array, and so on. The values stored on

same size, where the those arrays at a given index will be related in some form, for example defining a record data

element at a given index structure to store details about students. So, the first array will store the students’ names,
in one of the arrays

corresponds to another

element at the same

index in another array,

like descriptions of a

the second array their ages, the third array their addresses. When retrieving the element of

position 3 from each of those arrays, you'll be able to identify the name, age and address of the

third student.

1 Construct a program that creates a 1D array or list that stores six integer values. Output true

if the first element in the array is the same as the last element in the array.

2 Construct code that requires the user to enter a number. Use that number as the size of

an array or list of integers to be inputted from the keyboard. Calculate the sum of all even

numbers in the array or list; calculate the average of all its elements; and count how many of

those elements are odd numbers. Display those values.

3 Construct a program that creates an array or list that stores five names. Copy those elements

in a second array or list in reverse order. Display the second array or list.

Use your answers to the programming exercises above to answer the following questions.

1 What data type was your output for question 1? Was it a Boolean or a string variable?

Which one do you think is more appropriate?

2 What was the initial value of the count variable you used for question 2 to count

how many array elements were odd? Why was it important to set an initial value for

this variable?

3 Did the results for question 3 display accurately? What loops did you use to traverse

the arrays? Could those loops have been replaced by other types of loops? Which

are those?

GCommon mistake

Algorithms written to solve a problem should function correctly. When asked to construct an

algorithm that finds the smallest value in a 1D array or 1D list, many candidates initialize a variable

called min to 0 and then compare each element in the array with that one to find a smaller value.

The data structure could store only pasitive numbers; therefore, you will not find a value smaller

than 0.

Remember to initialize that variable to the first element in the array. In this case, if no other

element is smaller, you have already stored the smallest one.

B2 Programming

column Bl Two-dimensional arrays / lists
[6] [1] [2] A two-dimensional array can be seen as a table, with rows

and columns. To manipulate and traverse a 2D array,

[0]] 1 2 3 two indices are used: one for the rows and one for the

columns. When writing code, rows are always first and

e —11]] 4 columns second.
5 6 ————————— numbers

Look at the figure for storing numbers from 1 to 9 in a table

[2]| 7
with three rows and three columns. You will create a 2D

8 9 array or a 2D list for this purpose.

Each element in a 2D array (Java) or 2D list (Python) can

and column index).

n uy] be rS[/] [1]\: 8 ——value pe directly accessed by specifying its indices (row index

identifier row index column index

M 2D array (list)

B2.2 Data structures

Declaration

int numbers[] [] = new int [3] [3];

iy S S S S —
1 1
1 Python I
1 1
I numbers = [[0 for i1 in range(3)] for j in range(3)] 1
[1

The first value of 3 indicates the number of rows, and the second one the number of columns.

The value of 0 in the Python example refers to the initial value this list will be set to.

In Python, the 2D list will appear as a table In Java, the 2D array will only include the

with three rows and three columns, all filled structure of the table, as there are no initial

with zeros, as shown in the diagram below: values provided:

[0] [1] [2] [0] [1] [2]

0lfojo |0 [0]

[1ljo|0 |0 [1]

[2llo|o0|o0 [2]
M 2D array (list) filled with zeros M Empty 2D array

Manipulating 2D arrays or lists requires the use of two loops: the first one for the rows and the

second one for the columns. When addressing one specific item in the array or list, this is done

by using the name of the array or list followed by square brackets that include the row and

column indices.

numbers [0] [2] refers to the element in the array numbers, located at the intersecrion of

the first row with the third column.

Java

Scanner reader = new Scanner (System.in);

int numbers[] []= new int[3] [3];

for(int i = 0; i<3;i++) {

for(int j=0; j<3;j++) |

System.out.println("enter a number: ");

int value = reader.nextInt () ;

numbers[i] [j]=value;

}
for(int i = 0; i<3;i++) {

for(int j=0; j<3;j++) {

System.out.print (numbers[i] [j]1+ " ");

}
System.out .print ("\n") ;

1
1

numbers = [[0 for i in range(3)]for j in range(3)] i

for i in range (0,3): 1

for j in range(3): :

value = int (input ("enter a number: ")) :

numbers [i] [j]=value :

for i in range(3): H

for j in range (3): :

print (numbers([i] [§], " ", end ="") :

print {("\n") :

a

The first two count-controlled loops are used to traverse the array (i for the rows and j for the

columns). Then the user is asked to enter a number that is stored in the variable value, which

is then assigned to the array or list numbers.

The last two loops are used to traverse the array or list, so the values stored in the array are

displayed on the screen.

A 2D array can also have a different number of rows and columns.

In the example above, the array numbers will be constructed with two rows and three columns.

B2 Programming

To fill the array with values, the following code can be used:

int numbers[] [] I 5 0 = o

5 3]

IS

™

1 Construct code that creates a two-dimensional array or list with three rows and three

columns. Fill it with values read from the keyboard. Calculate the sum of all values and their

average, and display the results.

2 Construct a program that creates a two-dimensional array or list with three rows and three

columns. Display the sum of all elements per column. Display the average of all elements

per row.

3 Construct code that creates a two-dimensional array or list with three rows and three

columns that stores random numbers. Display the array and output the sum of all the

elements on the principal diagonal. Calculate the sum of the elements on the secondary

diagonal and display this value as well.

4 Matrix calculations are used extensively in machine learning within Computer Science. The

following constraints exist to calculate a dot product: width of matrix A must match height of

matrix B. Given two 2D arrays (lists) of integers that represent matrices, construct a program

to calculate and solve the dot product of those two matrices.

"Dot product” TR
7 8 (;Common

mistake

Algorithms written

to solve a problem

should function

correctly. Many

students lose marks

for incorrect use of

indices in 2D arrays

or incorrectly looping

through 2D arrays,

such as overlooking

boundaries or not

using two indices to

traverse the array.

Remember that you

always use rows first

and columns second.

B2.2 Data structures

1

4

Reflect on the most challenging parts of the programming exercises. How did you approach

them? Did you seek support, did you research or did you apply any other strategies? What did

you learn from this experience that you can apply to solve future problems?

2

5

3

6
X 9

7

9

10

L1112

8

10

11 12

B ArraylLists in Java
An ArrayList in Java is a class that allows the use of a dynamic array to store elements, this

time without a pre-defined size. ArrayLists can hold duplicate elements, they allow for random

access and they maintain the insertion order.

To be able to use an ArrayList, you need to import the java.util package:

This will import the entire package, or you can specifically choose to import just the required class:

import java.util.ArrayList;

Keep in mind that, when working with ArrayLists, the data type integer appears as Integer

instead of int.

If the ArrayList will store text, then it would look like this:

To be able to manipulate elements in an ArrayList, there are specific methods that can be used:

Method Explanation Code example

add() Add a new element passed as an argument grades.add(75);

get() Access an element at a given position (specified in the brackets) grades.get(2);

set() Update an element at a given index (first argument is the index; the | grades.set(2, 64);
second one is the value)

remove() Delete an item at a specific index grades.remove(2);

size() Returns the number of elements in the ArrayList grades.sizel();

clear() Delete all elements in the ArrayList grades.clear();

To traverse an ArrayList, you can use a FOR loop:

Arraylist<Integers> grades = new ArraylList<Integers>();

grades.add(75) ;

! grades.add(64) ;

: grades.add (95) ;

grades.add(50) ;

: grades.add(34);

§ for(int i=0;i<grades.size() ;i++) {

B

LT
 T

 T
 T
T
P

se
ss
nn
sn
ie
s

System.out.println(grades.get(i));

B2 Programming

In the code above, the grades ArrayList of type integer is declared. Five elements are added

to the ArrayList. A loop is used to traverse it (the size () method will return the number

of items in the ArrayList to specify how many repetitions will occur), and each element is

retrieved using the get () function and passing the corresponding index of the element that is

then displayed on the screen.

Another example of traversing the ArrayList is by using a FOR-EACH loop instead:

ArrayList<Integers> grades = new ArrayList<Integers();

grades.add(75) ;

grades.add(64) ;

grades.add(95) ;

grades.add(50) ;

grades.add(34) ;

for (int i: grades) {

System.out.println (i) ;

In this example, the variable 1 is not an index, but it is an element in the grades

ArrayList instead.

B Dynamic lists in Python
A dynamic list in Python is a dynamic data structure, meaning it does not have a fixed size.

Dynamic lists can store duplicate values. When creating a dynamic list, you can simply declare

it as an empty list: grades = []

However, when wanting to insert a new element, attempting to write something like this:

grades [0] = 75 will throw an error.

To manipulate dynamic lists, specific methods can be used:

Method Explanation Code example

append() | Add a new element passed as an argument at the end of the list grades.append(75)

insert() Insert a new element at a given index (first argument is the index, grades.insert(0,64)

the second is the value to be inserted)

remove() | Delete the first occurrence of a given item passed as an argument grades.remove(75)

popl() Delete the element at the specified index grades.pop|(0)

popl) Delete the last element if no index is given grades.popl)

clear() Empty the entire list grades.clear()

len() Return the size of the list len(grades)

To loop through a dynamic list, a FOR loop can be used:

grades=[]

grades.append (75)

grades.append (64)

grades.append (95)

grades.append (50)

grades.append (34)

for i in range (len(grades)):

print (grades[i])

B2.2 Data structures

Another way to achieve the same is:

grades=1[]

grades.append (75)

grades.append (64)

grades.append (95)

grades.append (50)

grades.append (34)

for i in grades:

print (i)

In this case, i is not the index, but an element in the dynamic list.

1 Construct programming code to create an ArrayList in Java or a dynamic list in Python that

stores five colours.

a Construct code to insert a sixth colour after the third.

b Change the element at the second position to a different colour.

¢ Delete the last element.

d Display the new data structure.

2 Construct a program that creates an ArrayList in Java or a dynamic list in Python that stores

three numbers.

Append three more values to the end of the data structure.

Display the size of the data structure.

Display the first element.

Store the first element into a variable.

Replace all the other elements with this value.

-

o

Q
o

N

o
W

Display the new values.

3 Construct a program that creates an ArrayList in Java or a dynamic list in Python that stores

three different numbers.

a Store the second value into a variable and insert it into the data structure at the end.

b Display the index of the first occurrence of that value.

4 Construct programming code that creates an ArraylList in Java or a dynamic list in Python that

stores four different values.

a Display all the elements.

b Swap the values of the second and third elements.

¢ Display the new data structure.

B2.2.3 Stacks

If you were a bank cashier, you would deal with lots of coins. To easily manipulate those, the

coins are categorized based on their values and stored in piles, for example a pile of 10p coins,

a stack of 20p coins, another stack of 50p coins, and so on. When the cashier needs one of

these coins, they would get it from the top of the pile containing the required coin value, so the

stack remains intact. When the cashier needs to add a new coin to one of the piles, they would

add the new coin to the pile; again, on top of it.

B2 Programming

Another example would be a stack of plates: a new plate is

added to the top of the stack and a plate is removed from

the top of the stack, otherwise plates can break.

In Computer Science, when performing actions that work

on the same principle, a specific abstract data structure

called stack can be used. The stack works on the principle

of Last In First Out (LIFO) or First In Last Out (FILO),

meaning that only the top element is accessed. The

operation of removing an item from the stack is called

pop, which means taking off the top element, while the

operation of adding an item to the stack is called push,

B Stacks of coins meaning adding an item to the top of the stack.

Stack: an abstract push (value)

data structure that pop ()

works on the LIFO

principle.

Last In First Out

or First In Last Out

principle: the last 8 toplndex =1
element inserted is the

first element removed. 5

Pop: a method for

deleting the element
M Stack

from the top of a stack.
 Push: 2 method for A stack could use a stack pointer variable to indicate the next free available slot in the stack.

inserting an element at A stack can be implemented as a static data structure using arrays (it would have a fixed size)

the top of a stack. or as a dynamic data structure using a linked list (which would not have a fixed size).

Stack pointer: a

register used to store B Stack operations
the memory address of Operations performed on a stack are:
the last added data in a

stack, or sometimes the

first available address in

a stack. public static boolean isEmpty() {
if(topindex ==-1)

return true;

else

return false;

}

B isEmpty: to check whether the stack is empty; attempting to pop an item from an empty

stack would throw an undertlow error

topindex = -1
__

def IsEmpty():
t0p|ndex =-1

if toplndex == -1: stack is empty

return True

else

return False

M Stack operation: isEmpty

B2.2 Data structures

B isFull:to check whether the stack is full; attempting to push an item into a full stack

would throw an overflow error

public static boolean isFull() {

if(topindex == StackSize -1)

return true;

else

return false; 12

}

def IsFull():

if topIndex == StackSize -1: 5

return True

else:

topindex =3

StackSize = 4

M Stack operation: isFull

B push: to add an item to the top of the stack

public static void push(int value) {

if(isFull())

System.out.println("Stack

overflow!");

else {

topindex++;

stack[topIndex]=value; 12

}

def push(value):

global topindex 5

if IsFull():

print("Stack overflow")

else:

toplndex += 1

Stack[topindex] = value

M Stack operation: push

push(9)

topIndex = 2

® pop: to delete an item from the top of the stack

public static void pop() {

if(isEmpty()
System.out.println("Stack underflow");

else

toplndex—;

}

def pop():

global topindex

if isEmpty():

print("Stack underflow")

else:
toplndex = 1

M Stack operation: pop

B peek: to return the top element

public static int peek() {
return stack[topindex];

}

/) pop()

12| toplndex =2

12) toplindex =2

def peek():

return Stack[topindex]

M Stack operation: peek

B2 Programming

4 Interrupt handling:

handling interrupt

reguests.

Interrupt: a signal

sent from a device or

software to request the

processor’s attention;

the processor will stop

its current activity

until the interrupt has

been serviced.

Recursion: a process

that uses a function

or procedure that is

defined in terms of itself

and calls itself.

4 Queue: an abstract

data structure that

works on the FIFO

principle.

First In First Out

principle: when the first

element inserted is the

first element removed.

LLim
B Queue

B2.2 Data structures

B Uses of stacks
Stacks are used when storing data in the order they occurred and when it might be necessary to

track back to a certain point or action in the past, as they respect the LIFO principle of operation.

Stacks can be used:

B to create an UNDO feature in games: actions are pushed into the stack; when undoing,

actions are popped

m to allow backwards navigation on a web browser: pressing the back button performs a pop

operation; opening a new website performs a push operation

m for interrupt handling: when the current activity of the CPU is interrupted, the content of

variables and return addresses are stored in a stack; after the interrupt is dealt with, those

are popped from the stack to restore its activiry

B to evaluate arithmetic expressions: when evaluating RPN (reverse polish notation)

expressions, the operands are pushed on to the stack; when an operator is met, if it

is a binary operator (requires two operands) two more pop operations will occur, the

calculation is performed and the result is pushed back into the stack — the process will

continue until the result is reached

B for recursion: return addresses and values of parameters are stored into a stack to help with

the unwinding process.

B2.2.4 Queues
A queue is a data structure that functions on the FIFO (First In First Out) principle. An example

of a queue is a line of people waiting to check out at a grocery store. The first to join the queue is

the first to leave. A new person who joins the line will enter at the end of the queue.

A queue uses a front pointer to show where elements will be removed from and a rear pointer

to show where elements will be added to.

A queue can be implemented as a static data structure

using arrays (it will have a fixed size, and it is possible to

become full as this fixed size cannot be exceeded). Or, a

queue can be implemented as a dynamic data structure,

using a linked list (which would not have a fixed size).

When a queue is implemented as an array, it can often be

seen and managed as a circular queue. This is in case there

are elements removed from the queue, so that there is still

a way to add new elements, even if the last index has been

reached, as the queue will not actually be full. In a circular

queue, if the rear pointer becomes equal to the front

pointer after an item is added, the queue becomes full; it

they become equal after an item is removed, the queue

becomes empty.

front / head

B Queue operations
5 Operations performed on a queue are:

B isFull: checking whether the queue is full; trying to

ENQUEUE enqueue an item into a full queue would throw an

overflow error

DEQUEUE

3
W Queue pointers

Enqueue: a method

of inserting an element

at the rear of a queue.

4 Dequeue: a method

of deleting an element

from the front of

a queue.

= ® isEmpry: checking whether the queue is empty; trying

3 9 2 4 to dequeue an item from an empty queue would throw

3 an underflow error

/ B enqueue: adding an item to the rear of the queue
rear / tail / back . .

B dequeue: removing an item from the front of the queue

B front displaying the element stored at the front of

the queue.

Bl Uses of queues
Queues are used when dealing with simulations or situations that require the first item entered

to be the first item dealt with. Applications of queues include:

Printer queues: Printing jobs are stored in a queue. The first printing job sent is the first

to be dealt with. New printing jobs join the queue at the rear of the queue. As such, all

printing jobs are dealt with on a first come first served basis.

Keyboard queues: The keyboard buffer (which stores characters as they are typed) operates

as a queue. As such, the first letter to be shown on the screen is the first letter typed. New

characters are added to the end of the queue.

Simulations of real-life situations: Checkout queues, car-washing queues, carpark-exiting

queues, and so on, are all situations that require a queue. People or cars enter the queue on

one side and exit it on the other side.

1 Define the term “stack”.

2 Define the term “queue”.

3 Identify the main operations of a stack.

4 ldentify the main operations of a queue.

5 Explain the FIFO and the LIFO principles and how they apply to stacks and queues.

6 Identify a real-life scenario where you could use a stack.

7 Identify a real-life scenario where you could use a queue.

8 Outline a situation where the use of a stack might be more efficient than the use of a queue.

9 Qutline a situation where the use of a queue might be more efficient than the use of a stack.

10 Identify a scenario where you might combine a stack and a queue within the same program.

11 You must store a list of numbers in a particular sequence and then retrieve them in reverse

order. Identify the data structure that is most suitable for this task and explain your reasoning.

12 Outline three uses of a stack.

13 Outline three uses of a queue.

14 Describe two characteristics of a stack.

B2 Programming

(;Common
mistake

Students often lose

marks by not giving

responses appropriate

to the keywords used

in the question. For

example, “compare

static and dynamic

data structures”

is expecting you

to provide both

similarities and

differences between

the two types of data

structures, rather than

just differences.

B2.2 Data structures

15 Describe two characteristics of a queue.

16 Compare the use of a stack with arrays or lists.

17 Compare static and dynamic data structures in terms of data storage and data access.

18 Explain the meaning of stack overflow and stack underflow and describe when they occur.

19 Use a stack to evaluate the following arithmetic expression: 52 * 3 2+ -

1 Construct a program that creates a stack that has a maximum size of seven elements. Push

five words into the stack. Display the top element. Pop two words from the stack and display

the top element.

2 Construct a program to reverse the elements from a given queue using a stack.

Use your solutions to the programming exercises above to answer the following questions.

1 Why is the maximum size of the stack important? What happens if this maximum size

is exceeded?

2 How would you change the solution to Exercise 2 if you were asked to reverse the

elements of a stack using a queue structure instead?

(;Common mistake

When required to state applications of a data structure, such as a queue or stack, students often

lose marks for not being clear enough to gain the marks. For example, saying that stacks are used

to undo would not be enough to gain any marks.

Be specific and explain a clear situation where an undo feature is needed, such as implementing

an undo feature in games: actions are pushed on to the stack and, when the previous action is

needed, the undo feature is used to pop the top action from the stack.

Programming algorithms

4 Big O notation: used

to find the upper bound

(worst-case scenario

or the highest possible

amount) of the growth

of a function; the

longest time or space

required to turn the

input into output.

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B2.4.1 Describe the efficiency of specific algorithms by calculating their Big O notation to

analyse their scalability

» B2.4.2 Construct and trace algorithms to implement a linear search and a binary search

for data retrieval

P> B2.4.3 Construct and trace algorithms to implement bubble sort and selection sort,

evaluating their time and space complexities

P> B2.4.4 Explain the fundamental concept of recursion and its applications in

programming (HL)

» B2.4.5 Construct and trace recursive algorithms in a programming language (HL)

B2.4.1 Big O notation
Complexity analysis of algorithms includes time and space analysis. Time complexity analysis

refers to how long an algorithm will take to run or how many steps an algorithm will take to

run, while space analysis refers to how much memory space it takes to run the algorithm.

Bl Time complexity
Consider the following algorithm:

.. e ———————— e
']

: Java ' Python

! for(int i = 0; i<5;i++) { ! for i in range (0,5):
System.cut.println("hellc"); : print ("hello")

} B -

How many times will this loop repeat? The variable i will take values from 0 to 4 included;

therefore, it is simple to say that the algorithm will repeat five times. If we are to replace

the 5 with n, the algorithm will repeat nn times and the time complexity will be of the order

of n. This is written as O(n), which is known as Big O notation. The time it takes to run

the algorithm is approximately proportional to n. The larger the n, the more accurate the

approximation; therefore, when calculating the Big O notation, the worst-case analysis is

considered (the larger the n, the better).

... T e e e T
: 1
i Java ' Python

for(int i = 0; i<n; i++) { : A for i in range (0,n):

System.out.println("hello"); 1 print ("hello")
1

} o oo o o o e e

B2 Programming

Consider the following example:

i Java E Python i
for(int i = 0; i<n; i++) { : for i in range (0,n): :

for(int j = 0; j<n; j++) { : for j in range (0,n): :

System.out.println("hello"); : : print ("hello") :

F) | R e i B LR

In the example above, the algorithm will repeat n times for the outer loop and n times for the

inner loop, so a total of n*n times, which means time complexity becomes O(n?).

Let's look at another example:

i Java E Python i
for(int 1 = 0; i<n; i++) { : for i in range (0,n): :

for(int j = 0; j<n+3; j++) { : for j in range (0,n+3): :

System.out.println("hello"); : print ("hello") :

} H R e T i i o e i it i s bbb vl

In the example above, the number of repetitions isn* + 3n. As time complexity becomes

more accurate for larger numbers, when n rakes a very high value, the addition of 3n is not

even taken into consideration. As such, constants are ignored (the rate of growth is what

matters) and the lower-order terms are ignored (as n grows larger, the larger term dominates

all other terms). Therefore, the Big O notation is still O(n?). In the same way, il the number of

repetitions is 25n°, n* + 25n® + ¥n, the coefficients will be ignored and only the term with

the highest exponent will be used, and so the Big O notation will be O(n?).

The final example is a simple statement, without any loops:

.. Py

Java i Python i
System.out.println("enter a number: "); : value = int (input ("enter a number: ")) :

int value = reader.nextInt(); 1 sum = 50 + value 1

sum = 50 + value; : & A

In this case, Big O notation is constant; no matter how large the input value, the algorithm will

take the exact same time to run, so we can say the time complexity is O(1).

The common time complexities expressed using Big O notation are:

B O(1) - constant time: The algorithm performs a fixed number of operations; the time taken

to run the algorithm does not depend on the size of the input. Such algorithms are ideal for

operations where you need consistent performance regardless of input size, such as basic

operations in data structures like hash tables.

B O(n) — linear time: The algorithm scales linearly with the size of the input. Such algorithms

are appropriate for simple searches where each element must be considered.

B2.4 Programming algorithms

B O(n?) — quadratic time: The time taken to run the algorithm is directly proportional to the

square of the input size. Such algorithms are often used when dealing with small data sets;

they are inefficient for large data sets.

m O(2") — exponential time: The algorithm’s running time doubles with every increase in the

input size. Such algorithms are generally impractical for large inputs due to rapid growth in

execution time.

B O(log n) — logarithmic time: The algorithm’s running time scales logarithmically with

the increase in the input size. Such algorithms are suitable for searching and some divide-

and-conquer algorithms. They are ideal for cases where you can efficiently reduce the

problem size.

B Space complexity
Space complexity analyses the amount of memory used by an algorithm with respect to its

input size.

Common space complexities expressed using Big O notation are:

B O(1) - constant space: The space used by the algorithm is not dependent on the size of the

input. The algorithm uses a fixed amount of memory, no matter the input size.

B O(n) — linear space: The memory usage scales linearly with the input size.

B O(n? - quadratic space: The space taken to run the algorithm is directly proportional 1o

the square of the input size.

Consider the following example:

}
System.out.println(sum) ;

print (sum)

B r
P 1

: Java . 1 Python !

! int sum = 0; : sum = 0 :

for(int i = 0; i<n; i++) { : for i in range (0,n): :

sum = sum + i; : sum = sum + i :

1 1
1 1
= o

In the example above, no matter how many repetitions there are, the space taken to store the

sumand i variables in memory is always the same. The sum and i will be overwritten with

every repetition, so the space complexity stays constant: O(1).

As memory is not a real issue these days, it is often the case when writing an algorithm to aim

for reducing the time complexity, even if that means trading off more space.

To calculate the space complexity of an algorithm, you need to look at:

B Variables and constants: As variables are overwritten and constants don't change their

value during the execution of the program, they will always take up the same amount of

space, so they don't need to be recalculated after the execution of the program.

B Inputs: Inputs are important for space complexity. If the inputs are variables, arrays or

other data structures, their space complexity differs.

B Execution: Based on how the algorithm is written, the space complexity can be constant

(when a fixed number of simple operations are performed) or differ (when, for example, a

function calls itself several times, and so extra space is needed to store the return values

and values of the parameters that will be used in unwinding to provide a solution).

B2 Programming

int sum Il [a
s]

sum sum + numbers[i]; sum = sum + numbers[i]

}
System.out.println(sum) ;

" -

1 1
1 1
1 1
1 1
1 1

for(int 1 = 0; i<n; i++) { : : for i in range (0,n): :

1 1
1 . 1
1 print (sum) 1
1 1
L o

H H T T T T LT LT r T T Ty v AR

In the example above, the sum will include each value stored in the array, so the space

required to run the algorithm is linear to the number of elements in the array: O(n).

B Choosing algorithms based on scalability and efficiency

B Small data sets: Simpler algorithms with higher time complexity (for example O(n? or

O(n*) can be acceptable.

m Large data sets: Algorithms with lower time complexity (for example O(n log n) or O(log

n)) are preferred, for better scalability.

B Real-time requirements: Algorithms with constant time complexity (O(1)) or logarithmic

complexity (O(log n)) are considered, where possible.

® Complex problems: Dynamic programming or divide-and-conquer approaches with

manageable time complexity are used.

Selecting the right algorithm depends on the problem constraints, input size and performance

requirements. Analysing time complexity helps ensure that the chosen algorithm will perform

efficiently as the input size grows.

1 Explain what Big O notation is and why it is used in Computer Science.

Define the terms “time complexity” and “space complexity”.

3 OQutline the difference between O(n) and O(n?). Identify two algorithms that present

these complexities.

4 Explain why you think it is important to consider the worst-case space complexity of

an algorithm.

5 Sketch a graph to compare the time complexity of O(n) and O(log n). What differences do

you notice?

6 Consider the following statement: “An algorithm with a Big O value of O(n) will always

be slower than one with a value of O(log n)”. Evaluate this statement to true or false and

explain your reasons.

7 Outline the two types of complexity analysis.

Identify which is generally faster for a very large n: O(log n) or O(2").

B2.4.2 Linear search and binary search
Search algorithms are used to find a specific item in a data structure. Such algorithms can

be used to find an item in a list or in a database; to search for an item (word or phrase) in a

document; to find a relevant webpage based on a keyword typed in a search engine; or to find a

location on a map.

B2.4 Programming algorithms

Step 1

Step 2

Step 3

W 1D array (list) - linear search

4 Linear search: a

method of searching,

in which each

element is checked in

sequential order.

B Linear search
A linear search is also called a “sequential search” as it

3 9 ? 4 traverses a data structure from the beginning to the end

I when looking for a specific item. In the best-case scenario,

‘ not equals the item is found in the first position, but in the worst-

key =7 case scenario the item is the last item in the list and so the

entire list is traversed.

Consider an array (list) of integers with ten elements and a

3 9 ? 4 key, being the element you are searching for.

/ To find the key, you will use a loop to traverse the

‘ not equals array (list).

key =7 Starting at the first index, the element stored at position

0 will be compared with the key. If they are the same,

the element is found; otherwise, the process repeats until

3 9 ? 4 the element is found or until the end of the array (list)

is reached.
|

‘ equals

key =7

If a conditional loop is used, the algorithm can be stopped

once the element is found. But if a count-controlled loop is

used, the algorithm will traverse the entire list (array), even

if the searched element has been found.

Java

int numbers= {3,9,7,4};

int key = 7;

H

int position = -1;

for(int i = 0; i<numbers.length; i++) {

if (key==numbers[i]) {

position = i; ¥

}
if (position != -1){

System.out.println("element found on position "+

position) ;

}
else{

System.out.println("element was not found!");

B2 Programming

Binary search: a

method of searching

an ordered array (list)

by repeatedly checking

the value of the

middle element and

disregarding the half of

the data structure that

does not contain the

searched element.

key =7

Python

numbers = [3,9,7,4]

key = 7

position = -1

for i in range (0, len(numbers)):

if key == numbers|[i]:

position = i

if position != -1:

print ("element found on position ", position)

else:

print ("element was not found")

This algorithm can be improved, so it stops when the element is found by using a

conditional loop.

‘When you think of Big O notation, linear search has a time complexity of O(n), as in the worst-

case scenario every single element in the array (list) will be traversed in the attempt to find the

searched key. At the same time, the space complexity is O(1), as the space required to run the

algorithm is constant.

M Binary search
Linear search is not a very efficient algorithm, especially when the size of the array (list) is

considerably high.

Binary search is a more efficient searching algorithm as it reduces the number of searches

to half with every comparison performed, so the time complexity is logarithmic O(log n).

However, to be able to perform a binary search on an array (list), the data structure must be

sorted (it must be in order). This is because the algorithm works as follows:

Set a variable (Lower) to store the lower bound index.

Set a variable (upper) to store the upper bound index.

Calculate the middle index (mid) by using the formulamid = (lower+upper) /2

Compare the value in the middle index with the search key (if numbers [mid] ==key).

1f they are the same, the value is found and the algorithm can stop.

m If the value in the middle position is smaller than the new lower

» / key, you can disregard the left side of the array (if the
mi .) ‘)

array is sorted in ascending order) by setting the lower

[0] @ [2] [3] variable to the middle index + 1: lower = mid + 1

m If the value in the middle position is greater than the
Z
=) .{', ? 9 key, you can disregard the right side of the array (if the

lower =0

upper = 3

mid = (lower + upper)/2 = 1

7>4,s0

lower=mid +1=2

mid = (lower + upper)/2 = 2

array is sorted in ascending order) by setting the upper

variable to the middle index — 1: upper = mid - 1

B Repeat the entire process, starting from the third point

until the value is found or the end of the array (list)

is reached.

7 =17, 5o the element is found

M 1D array (list) — binary search

B2.4 Programming algorithms

Java

int numbers([] = {3,4,5,7,9,11,13};

int key = 11;

beolean found = false; 5

int lower = 0; i

int mid = 0;

int upper = numbers.length;

while ((lower<=upper) && !found) { :

mid = (lower+upper)/2;

if (numbers[mid]=zkey) {

found = true;

} else if (numbers[mid]<key) {

lower = mid+1;

} else {

upper = mid-1;

}
if (found) {

System.out.println("the value was found on position " + mid);

} else {

System.out.println("the value was not found");

}
e a e R e R e e R SR E R R R A R A R R AR R R A e e A A AR AR e RN ee R R e AR ta sy

numbers= [3,4,5,7,9,11,13]

found = False

lower = 0

upper = len(numbers)

while lower<=upper and not found:

mid = int((lower + upper)/2)

if numbers [mid] ==key:

found = True

elif numbers [mid] <key:

lower = mid + 1

else:

upper = mid - 1

if found:

print ("the value was found on position ", mid)

else:

print ("the value was not found")

B2 Programming

Each algorithm is more appropriate in different scenarios. For example, if the list (array) needs

to be searched once for a given element, such as the ID of a worker, and the organization has

fewer than 50 employees, it would be faster to simply use a linear search, rather than having

to sort the data structure and then apply a binary search on it. However, if there is a need to

search for the home address of a student based on their school 1D, in a data structure already

ordered based on the students’ IDs, and the school has 1500 students, it would be much more

appropriate to use a binary search to retrieve the student’s details.

B2.4.3 Bubble sort and selection sort

Sorting refers to arranging the elements in an array (list) into ascending or descending order.

You already practised a swapping technique at the beginning of the unit. This technique is

4 Bubble sort: a used in sorting routines.

sorting algorithm that

compares adjacent H Bubble sort

values and swaps Bubble sort is a sorting algorithm that uses an incremental approach, and it works by

Fhem if they are in an repeatedly swapping the adjacent elements if they are not in the right order. If the array (list)

hissluagri 28 was traversed only once, there might still be elements in the array (list) that are not yet sorted.

Bubble sort algorithms work as follows:
Unsorted array (list)

1 2|9
swap

2| 3 9
swap

B Start at the beginning of the array (list).

Compare the current element with the next one.

It the two values are not in order, swap their contents.

Move to the next element in the array (list).

Repeat the process until all the elements have

been sorted.

As shown in the diagram, once the array (list) has been

3 3 2 traversed once, the last element is surely in the right

position. Therefore, to optimize the algorithm, the number

no swap of repetitions can be reduced by 1.

7 9

7 9
0 swap

79 - M
g

Sorted array (list)
M Bubble sort

B2.4 Programming algorithms

¢ Java
int numbers[] = {7,3,2,9};

for (int i = 0; i <numbers.length; i++) {

for (int j = 0; j<numbers.length-1-i; j++) {

if (numbers [j] >numbers [j+1]) {

int temp = numbers([j];

numbers [j] = numbers[j+1];

numbers [j+1] =temp;

for (int i=0;i<numbers.length; i++) {

System.out .print (numbers [i]l+" ");

numbers = [7,3,2,9]

for i in range (len(numbers)) :

for j in range (0, len(numbers)-1-i):

if numbers|[j]>numbers[j+1]:

temp = numbers[j]

numbers [j] =numbers [j+1]

numbers [j+1] =temp

for i in range (len(numbers)) :

print (numbers[i], " ", end="")

The inner loop repeats from 0 to the size of the array (list) -1, because you compare one

element with an adjacent one and, when the current element is the second last to be compared

with the last element, that should be the last comparison that takes place.

The same repetition is reduced by i every time. This ensures that, when the array (list) is

traversed the first time, it will repeat to its size -1, as i isinitially 0, but with the next

traversal it will repeat to size -2, and the next passitwill be size -3, and so on. Thisis

happens because, with the first pass of the array (list), the last element moves to the correct

position; with the second pass, the last and the second last are in the correct position, and

S0 on.

B2 Programming

Another way to implement a bubble sort is by using a conditional loop:

int numbers[] = {7,3,2,9};

boolean swapped = true;

int n = numbers.length;

while (n>0 && swapped) {

swapped = false;

n = n-1;

for (int i = 0; i<n-1; i++) {

if (numbers [i] >numbers [i+1]) {

int temp = numbers[i];

numbers[i] = numbers[i+1];

numbers [i+1]=temp;

swapped = true;

}
for (int i=0;i<numbers.length; i++) {

") ; System.out.print (numbers[i]+"

‘ Python

: numbers = [7,3,2,9]

: swapped = True

: n = len(numbers)

: while (n>0 and swapped) :

: swapped = False

: n=n-1

: for i in range(0, n-1):

1 if numbers[i] snumbers[i+1]:

: temp = numbers[i]

: numbers [i] =numbers [i+1]

: numbers [i+1] =temp

- swapped = True

: for i in range (len(numbers)) :

: print (numbers([i], " ", end="")

Although it is quite simple to understand the algorithm and to implement it, the bubble sort

has a time complexity of O(n?), which means it is a very inefficient algorithm, especially when

it comes to large sets of data. In terms of space complexity, the bubble sort algorithm is very

efficient O(1), requiring a constant memory space to store the variables read from the array, the

indices and the temporary variable. This required space would not depend on the size of the

input; it would not require additional space proportional to the size of the input array.

Unsorted array (list)

1

Sorted array (list)
M Selection sort

B2.4 Programming algorithms

M Selection sort
To easily understand the algorithm, imagine you split the

original array (list) into two parts. The first part is the

sorted part, which is initially empty, and the second part

is the unsorted part, which initially contains the entire

array (list). With the first part, the smallest element in

the unsorted part is selected and swapped with the first

element in the array. This smallest element now becomes

the sorted part of the array. In the second pass, you now

search for the smallest element in the unsorted part and

swap it with the second element. The sorted part now

includes the first and second element. The process repeats

until all the elements are sorted, the sorted part includes

the entire array and the unsorted part is empty.

Java

int numbers[] = {9,7,2,3};

int min, minIndex;

for(int i = 0; i<numbers.length; i++) {

min = numbers[i];

minIndex = i;

for(int j = i+1; j<numbers.length; j++) {

if (numbers[j]<min) {

min = numbers[j];

minIndex=7j;

}
numbers [minIndex] = numbers[i];

numbers [i] = min;

}
for(int i = 0; i<numbers.length; i++) {

System.out.print (numbers[i] + " ");

}

Python

numbers = [9,7,2,3]

for i in range (len (numbers)) :

min = numbers[i]

minIndex = 1

for j in range(i+1, len(numbers)):

if numbers[j] < min:

min = numbers[j]

minIndex = j

numbers [minIndex] = numbers[i]

numbers[i] = min

for i in range(len(numbers)) :

print (numbers[i], " ", end="")

B2 Programming

Selection sort: a

sorting algorithm that

repeatedly selects the

smallest or largest

element (ascending

or descending order)

from the unsorted part

of the data structure

and moves it to the

sorted part.

The same algorithm can be implemented by using just the index of the smallest element,

instead of retrieving the smallest element and its index to swap:

Java

int numbers[] = {9,7,2,3};

int min;

for(int i = 0; i<numbers.length-1; i++) {

min =i;

for(int j = i+l; j<numbers.length; j++) {

if (numbers [§] <numbers [min]) {

min=j;

}
int temp = numbers[i];

numbers [i] =numbers [min] ;

numbers [min] =temp;

for({int i = 0; i<numbers.length; i++) {

System.out.print (numbers[i] + " "};

numbers = [9,7,2,3]

for i in range(len (numbers)-1):

min = i

for j in range(i+l, len(numbers)):

if numbers[j] < numbers[min]:

min = j

temp = numbers[i]

numbers [i] = numbers[min]

numbers [min] = temp

for i in range (len (numbers)) :

print (numbers[i], " ", end="")

The limitation of the selection sort is that it doesn’t allow for an early exir it the array (list)

is ordered at an earlier point. The time complexity of the selection sort is O(n?) and the space

complexity is O(1). Selection sort performs a smaller number of swaps; therefore, it is said to

be a more efficient algorithmm than the bubble sort algorithm. However, it is possible to stop the

algorithm if all elements are sorted during an early pass in a bubble sort by using the flagin a

conditional statement, which is not possible in a selection sort.

Research skills: Present information in a variety of formats and platforms - find an

ingenious way to explain one of the programming algorithms you have studied. For

example, use labelled cups to explain a sorting algorithm, create an animation, a video,

and so on.

B2.4 Programming algorithms

A
T
N
O
 T
H

4 Base case: a

terminating solution

(that is not recursive) to

a process.

General case: a

process where the

recursive call takes

place.

4 Winding: a process

occurring when

recursive calls are made

until the base case is

reached.

¢ Unwinding: a

process occurring

when the base case is

reached, and the values

are returned to build a

solution.

B2.4.4 Recursion (HL)
Recursion represents a technique that involves the use of functions, procedures or algorithms

calling themselves one or more times until one or more specific conditions are met, at which

point the process unwinds itself to produce a solution, by processing the last call to the first.

Characteristics of a recursive algorithm include:

B amethod or function that calls itself

B atermination condition or a base case — a termination solution that is not recursive;

without a base case, the algorithm will run to infinite

B ageneral case that calls itself recursively or is defined in terms of itself, and moves towards

the base case by changing its state (winding)

m unwinding, which occurs when the algorithm reaches the base case (cascades up until the

original problem is solved or, in other words, is processing the results, starting at the last

call and building up towards the base case).

Recursive algorithms provide elegant solutions to complex problems, by often using less code

and fewer variables than iterative approaches. They allow the programmer to divide complex

problems into smaller sub-problems that are more readable and easier to solve. However, if

many recursive calls are made, there is a heavy use of the stack, a process that is memory

intensive and could potentially lead to stack overflow, and the computer running out of

memory. If the termination condition is not set correctly, the algorithm might run to infinite,

or the system might crash or freeze due to the high number of recursive calls.

Recursion might take longer to execute than other techniques or iterative approaches, as

each call takes a specific amount of time, in addition to the time required to build up the

final solution.

Recursion can also be challenging to follow sometimes, which can make it difficult for other

programmers to maintain, document or modify it.

Recursion can be used:

B to implement sorting algorithms, such as quick sort

B for fractal image creation

m for traversing binary trees or graphs

m for solving mathematical problems, such as factorial functions and towers of Hanoi.

When choosing whether to solve a problem by using a recursive algorithm, ask yourself the

following questions:

m Is it possible to identify a base case?

B Isit possible to solve the problem by calling itself or splitting it into smaller instances of the

same problem?

m Does it require data structures like graphs, trees or linked lists — data structures that can be

seen as repetitive instances of itself?

Does it require backtracking?

Is there a mathematical expression that can be translated into a recursive algorithm?

B Are you solving the problem in a more elegant, simpler and logical way by using recursion,

without sacrificing too much memory or performance?

B2 Programming

Define the term “recursion”.

Compare recursive and iterative algorithms.

Explain the need for a base case in a recursive program.

Identify one consequence of not using a base case in a recursive function.

Identify some advantages and disadvantages of using recursion.

D

R

W

N

=

Explain what steps you would take to debug a recursive function that does not work

as expected.

B2.4.5 Recursive algorithms (HL)

B Factorial of a number
One of the exercises in Section B2.3.4 required you to find the factorial of a number. You

== T
o
=
=<

were able to solve this problem by using a loop. However, now you understand the concept

of recursion, you can easily establish that this problem can be solved by using a recursive

algorithm. Starting from the mathematical formula that defines the factorial of n: nl =n *

(n-1)!, you can identify that 5! can be defined as 5 *4! and 4! can be defined as 4*3!, and so

on, until n = 1, which will return 1. The base case is whenn = 1, as 1 will be returned, and

the recursive call is when the method calls itself with n - 1 as a parameter. Therefore, the

solution to this problem is:

R0 g g g S g 5

¢ Java E Python E
i public static int factorial(int n) i : def factorial(n): :

if (n==1) { 1 if (n==1): 1

return 1; : return 1 :

} : else: !

else { : return n * factorial(n-1) :

return n * factorial (n-1); : fact = factorial (5) :

} : print (fact) :

i} | temeeesscscessssees s ss s a
public static void main(Stringl[] args) {

int fact = factorial(s);

System.out.println(fact);

M Fibonacci sequence
Another application of a recursive method is in solving the Fibonacci sequence.

The Fibonacci sequence looks like this:

0,1,1,2,3,5,8,13, 21, 34...

B2.4 Programming algorithms @

A
I
N
O
 T
H

Java

public static int fib(int n) {

}
public static void main(Stringl[] args) {

}

if (n==0) {

return 0;

} else if (n==1) {

return 1;

} else {

return fib(n-1) + fib(n-2); :

Scanner read

System.out.println("Enter a number: ");

int n = read.nextInt();

for(int 1 = 0; i<n; i++) {

System.out .print (fib(i) + " ");

THE FIBONACCI SEQUENCE
Each number is the sum of the two that precede it.

011235818 21
0+1=1

1+1=2
1+ 2

M Fibonacci sequence

m F=0

m F=1

m F,=F +F

u

m F=[F +F,

To find the sequence for the first n terms, the base cases are identified as being ¥ and T,

where the returned values would be 0 and 1 and the recursive call: F_ +F_,

= new Scanner (System.in) ;

o

e

e

e

e

e

e

e

e

e

e

e

e
y

e s e asas et a st s e r et E s ta e Eaae e e e NN a S Ea s SR RN RRAe s aa s Rsa s aana

Python

def fib(n):
if n==0:

elif

else:

return fib(n-1) +

n = int (input ("enter a number: "))

for i in range(n):

print (£ib (i),

1
1

1
1

1

1
1

1

1
1

1
1

1

1
1

1

1
1

1

1
1

end="") 1

1
4

B2 Programming

B Quicksort
Quicksort: a 1f the bubble sort and selection sort discussed earlier use an incremental approach, the I:E

sorting algorithm that quicksort is an efficient sorting routine that uses the divide-and-conquer algorithm. The 2

repeatedly selects an divide-and-conquer principle refers to dividing the problem into two or more identical, smaller =

element as a pivot and sub-problems that can be solved individually, and their solutions combined to produce the
partitions the other

. solution to the larger problem.
elements into two sub-
arrays (lists): one that The quicksort algorithm makes use of a pivot element from the data set, against which the

includes elements that other elements are compared, to identify their correct position. The pivot element can be

are smaller than the the first element, the last element, a random element or the middle element in the darta set.
pivot and the other one

that includes elements

that are larger than
the pivot. A way to construct the quicksort algorithm is by implementing the following logie:

Imagine that the data structure is broken into two partitions (sections): one that contains

elements smaller than the pivot and one that contains elements larger than the pivor.

m Set the pivot as the middle element.

Start at each end of the list by using a left pointer and a right pointer.

Move the values smaller than the pivot to the left partition.

Move the values larger than the pivot to the right parrition.

Recursively apply the same principle for the left partition until all elements are sorted.

B Recursively apply the same principle for the right partition until all elements are sorted.

Java

public static void gquickSort (int start, int finish, int[Jnumbers) {

if (start>=finish) {
return; H

}
int left = start;

int right = finish;

int pivot = numbers[(start+finish)/2];

System.out.print ("start:" + start + " finish: " + finish + " left: " + left

+ " right: " + right + " pivot: " + pivot);

while (left<right) {

while (numbers [left] <pivot) {

left = left+1;

System.out.println("left: " + left);

}
while (numbers [right] >pivot) {

right = right-1;

: System.out.println("right: " + right);

}
if (lefte=right) {

int temp = numbers|[left];

numbers [left] = numbers[right];

numbers [right] = temp;

left = left+1;

right = right-1;

System.out.println() ;

H H H

H H H H
H H H H B T T T T T T T T T T T LT T T T T T T TN

B2.4 Programming algorithms @

A
I
N
O

T
H

for({int i = 0; i<numbers.length; i++) {

System.out.print (numbers[i] + " ");

}
System.out.println();

System.out.println("left: " + left);

System.out.println("right: " + right);

}
System.out.println("quickSort from start: " + start + " right: " + right);

quickSort (start, right, numbers);

System.cut.println("quickSort from left: " + left + " finish: " + finish);

quicksSort (left, finish, numbers);

}
§ public static void main(Stringl[] args) { :

int numbers[] = {16,13,4,6,22,1,9,5}; |

quickSort (0, numbers.length-1, numbers);

for(int i = 0; i<numbers.length; i++) {

System.out.print (numbers[i]l+ " ");

)

H H

H
H H

H H H H
H H H H H
H H H H H
H BT T LT LT T T T T T LT T L T T T T LTI T TR TTT T

def quickSort (start, finish, numbers):

if (start==finish) :

return

left = start

right finish

' i
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: pivot = numbers[int ((start+finish)/2)] :

: print ("start: ", start, "finish: ", finish, "left: ", left, "right: ", :

1 right, "pivot: ", pivot) 1
1 1
1 while left<right: 1

: while numbers[left]<pivot: :

- left = left + 1 :
. print ("left: ", left)]

: while numbers [right] >pivot: :

: right = right - 1 :

1 print ("right: ", right) 1
1 1
1 if left<=right: 1

: temp = numbers[left] :

: numbers [left] = numbers[right] :

: numbers [right] = temp :

: left = left + 1 :

: right = right - 1
:

: print ()
:

L] Ll

B2 Programming

for i in range (len(numbers)):

print (numbers([i], " ", end="")

print ()

print("left: ", left)

= =
o
Z
=<

print("right: ", right)

print ("quickSort from start: ", start, " to right: ", right)

print ("quickSort from left: ", left, " to finish: ", finish)

quickSort (left, finish, numbers)

numbers = [16,13,4,6,22,1,9,5]

quickSort (0, len(numbers)-1, numbers)

for i in range(len(numbers)) :

1 1
1 1
1 1
1 1
I 1
1 1
1 1
1 1
1 1
I 1
1 1
1 1
1 quickSort (start, right, numbers) 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 print (numbers[i], " ", end="") 1
1 1

[0] [1] [2] (3] [4] [5] [6] (7]
116)13[4[6]22[1] 95 |smeptsanas eft: D right: 7 phvot &

left: 1 right: 6
[0] [1] [2] [3] [4)([5])[6] (7] right. 5

G 2[5]13[4 [6[22[1]9 [16]swep13ana et 2o
@®Common left: 4 right:

. [0] [1] [2] [4] [5] [6] [7] quickSort start: 0 right: 2 s(:art4f;lfg|nltsh22
mistake 3[511(4 22[13[9 [16|swap6ands left: 0 rl_gm: % pivot 1

right:
Always pay attention . . eft 1rishtt 0

to the logic benind [0] [1] [2] (3] [4] [5] [6] [7] auicksortstar: 0 ight: 0. S35 ey 5
N —— quickSort left: 1finish: 2 jeft: 1 right: 2 pivot 5

9 i 45/1|4|6|22(13[9 |16|swap5and1 ——
write. Many students . L e - ri o

implement sorting [0] [1] [2] [3] [4] [5] [6] [7] heor b o Tefca right: 7 pivot 13
algorithms incorrectly 5 . 54161221139 [16|swapsanda auicksort left: 4 finish: 7 r_|ght:6

or they cqnfuse quickSort start: 4 right: 3 l;gtftsfin '2it5:h317_
?hebalgcnthrzs [0] [1] [2] [3] [4] [5] [6] (7] quickSort left: 5 finish: 5 ::Efg"ght:?p“‘m 22
in between. For quickSort left: 5 finish: 7 ———vou-—

exampie, when the Lé . Gl cliD) 9 J0) e 22 ena® uickSort start: 5 right: 6 ls(:?rt?;:‘gllrltshfis
question is requiring [0] [1] [2] [3] [4] [5] [6] [7] i e |efl:'5r§gmfg'pivm13
the sorting of an 1741569 .22 16| swap 22.and 16 W

array in ascending quickSort start: 5 right: 4 $onant
order by using the ickSort left: 6 finish: 6
selection sort, a [0] 1] 121 [3] [4] [5] 16] [7] quickSort lft: 7 fiish: 7
common mistake 8111415 |6|9(13[16(22

is to implement an

incorrect bubble sort,

or an algorithm that

in descending order

instead of ascending,

as required.

M Quicksort

1 Complete a trace table for a bubble sort algorithm to sort the numbers: 16, 13, 4, 6, 22, 1,9, 5.

2 Complete a trace table for a selection sort algorithm to sort the numbers: 16, 13,4, 6,22, 1,9, 5.

Pay attention to the 3 Complete a trace table for a quicksort algorithm to sort the numbers: 16, 13, 4, 6, 22, 1, 9, 5.
features of each of 4

the sorting algorithms

and understand the

logic behind them.

Create a table outlining the Big O value for both time and space complexities for all the

searching and sorting algorithms you have studied.

5 Outline the principles of working of a selection sort and a quicksort algorithm.

B2.4 Programming algorithms @

A
T
N
O
 T
H

Java

class Node

{
int data;

B Traversal of binary trees
At this point, you will need to review the binary trees concepts in Section B4.1.4. If you have

not covered this topic yet, take the time to do it now.

Binary trees can be traversed by using a recursive algorithm as well. The logic behind this is

the following:

B Visit a node or display its content.

B Traverse the left subtree.

m Traverse the right subtree.

The order of those three operations depends on the type of traversal used. For example, in an

in-order traversal you need to follow the left, root, right pattern, as shown in the algorithm

below; as such you will go to the leftmost node and visit it, then the data in the node above,

and then the right node. Once this is done, you move one level up and repeat the process, so

the left subtree will be first traversed, then the root and then the right subtree. In a post-order

traversal you need to follow the left, right, root pattern, and in a pre-order traversal you need

to follow the root, left, right traversal.

Node left;

Node right;

Node (int value) {

data

left=

)

= value;

right=null;

class testTraversal |

void inorder (Node root)

{
if (root == null) {

)
return;

inorder (root.left) ;

System.out.println({rcot.data);

inorder (root.right) ;

}
public static void main(Stringl[] args)

Node

root

root

root

root

root

root

root = new Node(5);

.left = new Node(3);

.right = new Node(8);

.left.left = new Node(2);

.left.right = new Node(4);

.right.left = new Node(§) ;

.right .right = new Node (9) ;

inorder (root) ;

}
B LT P PP T T

1 Python |

: class Node: :

] def _ init_ (self, value): 1
: self.data = value :

: self.left = None :

: self.right = None !

: def inorder (root) : :

1 if root is None: 1

: return :

: inorder (root.left) :

: print (root.data, " ", end="") :

: inorder (root.right) :

: root = Node(5) :

I root.left = Node(3) 1

: root.right = Node (8) :

: root.left.left = Node(2) :

: root.left.right = Node (4) :

: root.right.left = Node(5) :

: root.right.right = Node (9) :

: inorder (root) :

e o o e o

Implement the post-order and pre-order traversals

of a binary tree using recursion.

B2 Programming

-
=

Thinking skills: Use your answer to the programming exercise above to answer the following questions. [}

Create novel 1 Did you use two different functions to solve the exercise? Did the functions work "‘4_:

solutions to as expected? =

problems — choose 2 Did you use any local or global variables? Why did you need any local variables, if

an iterative you used any?

program you have

created before, and

attempttorewrite. (@ Common mistake
it using a recursive B . i
approach Practical questions requiring algorithms to be described often lack clarity. Ensure steps are clearly

outlined. You can support explanations by adding code or pseudocode statements, but those

should be clearly explained to gain marks.

B2.4 Programming algorithms

File processing

4 Absolute path:

the location of a file

specified from the root

directory (the full path).

Relative path: the

location of a file relative

to the current folder.

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B2.5.1 Construct code to perform file-processing operations

When creating a program, you might want to store data permanently so that, once you

close your program or switch off the computer and you turn it on again, the data can still be

retrieved and manipulated. One way to achieve this is to store the data in a file. The program

will be able to manipulate the data stored in several types of files, such as text files (txt),

comma-separated value files (.csv), binary files (.dat), and so on.

To avoid having to use the absolute path of your file (to specify the entire location), save the

file within the same folder as your program. This will allow you to access the file by simply

using its file name, also called the relative path of the file.

A text file is a sequential file, meaning that data in the file can be accessed sequentially (line

by line) and new records will be added to the end of the file.

A file can be opened in several modes: write, read and append. When opening a file in write

mode, new data inserted into the file will overwrite the existing content in the file. Read mode

is used to allow you to access the data from the file to read it, and append mode allows you to

insert new records at the end of the file without erasing previous content.

The process to write text to a text file is as follows:

B Open the file for write or append, as needed.

B Prepare the line of text to be written.

B Write the line to the file.

m Close the file.

The process to read text from a text file is as follows:

B Open the file for read.

B Read the content from the file:

[0 Read a single line from the file.

[0 Use a loop to repeat for all the lines in the file and read them line by line.

[0 Read the entire file into a data structure.

m Close the file.

File processing in Java
To process files in Java, you can use:

® the Scanner class

m the FileWriter class

m the BufferedReader class.

B2 Programming

B Scanner class
The Java package java. io includes the Files class that allows you to manipulate files, so

this package needs to be imported first.

To create a file, follow the procedure of creating an object of type File and pass the file name

as a parameter to the constructor.

File f = new File ("fileName.txt");

There are specific methods that can be used on the newly created file:

Method Explanation

exists() Returns true if the file exists on the disk

delete() Deletes the file

getName() Returns the name of the file

length() Returns the number of characters in the file

renameTo() | Receives a parameter to specify the new name of the file

canRead() Returns true if the file can be read

You have already used the Scanner class several times by now to read input from the

keyboard. You can use the same class to read a file, by passing a file object as a parameter.

Scanner nameOfScanner = new Scanner (f);

In the line of code above, the nameOfScannexr variable is an identifier, chosen to label the

scanner for furure use, and the f variable passed to the Scanner constructor is the file object

created above.

The same purpose can be achieved by using:

Scanner nameQfScanner = new Scanner (new File ("fileName.txt"));

The Scanner uses tokens. When you use a function like nextLine (), the Scanner will

split the input into tokens (units of user input, separated by whitespaces).

Tor example, if the text file conrains the following rwo lines of text:

"Bobby Bob"

3 75.5

the Scanner will split this into tokens, as follows:

Token Possible data types

"Bobby string

Bob" string

3 int, double, string

75.5 double, string

Each call to the functions next (), nextInt(),nextDouble(),and so on, will

consume a token, meaning it will read the token and advance the cursor to the next one.

Consider the following exercise: Construct a program that will read five numbers from the text

file called “numbers” and will output their average.

B2.5 File processing -

Consider that the text file includes the following numbers on five different lines:

Java

i import java.util.*; 3

§ import java.io.=*; §

public static void main(String[] args) { i

try {
Scanner read = new Scanner (new File ("numbers.txt"));

double sum = 0.0;

: double average = 0.0; i

for (int i = 0; i<5; i++) {

double value = read.nextDouble();

sum = sum + value;

}
average = sum/5;

System.out.println("average is: " + average); i

} catch (FileNotFoundException e) { i

e.printStackTrace () ;

In the code above, the function nextDouble () is used to read the next token in the file,

as the problem already described the data type of the values stored in the file. But in case

you don't know what type of data is stored, the scanner has functions that will return true or

false when checking whether the next token is of a specific data type. As such, the function

hasNextInt() will return true if there is a next token in the file of darta type integer.

Similarly, you can use hasNextDouble () or hasNextLine ().

Another structure used above is a FOR loop that repeats five times. This is possible as the

number of lines in the text file is known. In case that is unknown information, a conditional

loop can be used to repeat, as long as there is a next token in the file. The condition would

include the function hasNext ().

To read a file line by line, the function nextLine () can be used.

B2 Programming

Java

import java.util.*;

import java.io.*;

public static void main(String[] args) {

try {
Scanner read = new Scanner (new File("numbers.txt"));

while (read.hasNext ()) {

String line = read.nextLine();

System.out .println{line);

}
} catch (FileNotFoundException e) {

e.printStackTrace () ;

B

L

R

T

T

R

TP

PR
 T

P
PP

 T
 T

P
P

TP
 T

TP

TP

 P
P
TP

 T
P

Even if the values stored in the file are of decimal numbers, they can be read with

nextLine (), which interprets them as being of string data type. This is because, as

described above, the values stored in a file can have more possible data types. If a conversion is

possible to one of the required data types, there will be no error thrown.

In both examples, a try/catch block is used for exception handling. This is because the text

file might not exist, or any other error might occur when reading the data and performing the

required operations. By using exception handling techniques, the code will not crash.

The java. io package is used for both input and output. Therefore, it also includes the

PrintStream, which allows you to write output to the text file.

Java

import java.uktil.*;

import java.io.*;

public static void main(String[] args) {

try {
PrintStream out = new PrintStream(new File

("numbers.txt")) ;

H
H H

out.println("Hello world!");

out.println("I added content to the text filel");

} catch (FileNotFoundException e) ({

e.printStackTrace () ;

—
—

When creating the PrintStream, the out variable has been used as an identifier. The file

passed as a parameter is generated by calling the constructor called File. In case this file

already exists, it will be overwritten. Otherwise, a new file called numbers . txt will be created.

It is important to keep in mind that you should not open a file for both reading and writing at

the same time (Scanner and PrintStream).

B2.5 File processing

If you want to append data to the file so the new text will be added at the end of the

file, rather than overwriting its contents, you can replace the File constructor with

FileOutputStream and pass the parameter true together with the file name to it. By

setting the second parameter to true, it sets the file to append mode.

Java

import java.util.*;

import java.io.*;

public static void main(String[] args) {

try {
PrintStream out = new PrintStream(new

FileOutputStream("numbers.txt", true));

out.println("A new line appended!");

H out.close () ;

}
- catch (FileNotFoundException e) {

e.printStackTrace() ;

The PrintStream can be closed at the end, by simply using the close () function:

out.close ().

B FileWriter class
The FileWriter classisalso partof the java. io package, and it is used to write data in

character form to the file (streams of characters). To create a FileWriter, simply create a

FileWriter object that will pass the file name as a parameter to the constructor.

FileWriter out = new FileWriter ("numbers.txt");

Again, it the file does not exist, a new one will be created, bur if it exists it will be overwritten.

To write data to the file, the write () function is used and the writer can be closed by using

the close() function.

import java.util.*;

import java.io.*;

public static void main(String[] args) {

try {
FileWriter out = new FileWriter ("numbers.txt");

out.write("This is the first line!");

out.close();

} catch (IOException e) {

e.printStackTrace() ;

H T T T T T

B2 Programming

The code above will overwrite the existing text in the file. To open the file in append mode, just

set the append mode to true, by adding a second parameter to the FileWriter constructor.

Java

import java.ukbtil.*;

import java.io.*;

public static void main(String[] args) {

try {
FileWriter out = new FileWriter("numbers.txt", true);

out .write("This is the second line!");

out.close();

} catch (IOException e) {

e._printStackTrace () ;

H H
H H

H H

H H

H H
H H H H

H H

To read data from a file in character format, FileReader can be used.

FileReader read = new FileReader ("numbers.txt");

This allows you to read a single character from the file with the read () method, to read

the characters from the file and store them into a named array with the read (char [1]

arrayName), or to read a given number of characters from the file starting at a specific index

and store them into a named array with read (char[] arrayName, int startIndex,

int length).

H H

Java

import java.util.*;

import java.io.*;

public static void main(String[] args) {

char[] text = new char[100];

try
FileReader reader = new FileReader ("numbers.txt");

reader.read (text) ;

System.out .println(text);

reader.close () ;

} catch (IOException e) {

e.printStackTrace() ;

P

T

PP
 T
P

P T
 P
P
PP

 P
P
P
P

l BufferedReader class
BufferedReader classisused to read data from a character-based file. It can read a

single character by using the read () function or read an entire line of text by using the

readLine () function. To use the Buf feredReader, there is a need to instantiate a

FileReader objectas well.

B2.5 File processing

Java

import java.util.*;

import java.io.*;

public static void main(String[] args) {

char[] text = new char[100];

try {
FileReader reader = new FileReader ("numbers.txt");

BufferedReader br = new BufferedReader (reader) ;

int singleChar = br.read();

while (singleChar!=-1) {

System.out.print ((char)singleChar + " ");

singleChar = br.read();

}
br.close();

reader.close() ;

} catch (IOException e)
: e.printStackTrace() ;

Before printing the character, it is converted to a char, as the values read from the

Buf feredReader are integer values representing the given character. If the method returns

—1, it means there are no more characters in the file; therefore, this condition is included in the

conditional loop.

BT L LT T T T LT T T T PT PP PP PP tassnneas tasesssasessansaisasesaannes

Java

import java.util.*;

import java.io.*;

public static void main(String[] args) {]

char[] text = new char[100]; i

try {
FileReader reader = new FileReader("numbers.txt");

BufferedReader br = new BufferedReader (reader) ;

String line = br.readLine();

while (line!=null) {

System.out.println(line) ;

line = br.readLine();

}
br.close();

reader.close() ; :

; } catch (IOException e) { ;

E e.printStackTrace () ; E

p
u
—

B2 Programming

File processing in Python
To process files in Python, use the following functions:

open()

read() |

B readline()

B write()

u close()

The open () function takes two parameters: the name of the file and the mode the file should

open in. There are several modes available in Python:

B "w" —write mode: The file is opened for writing text to it:

0O 1If the file does not exist, it creates a new file with the given name.

[0 When adding text in write mode, the new text added will overwrite the previous text.

B "a" —append mode: The file is opened for adding text at the end of the file:

[0 1If the file does not exist, it creates a new file with the given name.

0 When adding text in append mode, the new text is added at the end of the file, so the

previous text is not overwritten.

B "r" —read mode: The file is opened for reading data from it:

0 1f the file does not exist, it will throw an error.

The default mode is the read mode. Therefore, writing £ = open ("numbers.txt") is the

same as writing £ = open("numbers.txt", "r").

Python

f = open("numbers.txt", "w")

f. write("First line")

f.close()

The code above will create a file called numbers . txt in case it does not exist on the disk,

and it will write the given text to it. Once this is done, the file is closed. If the program is run

again with a different line of text, the existing text in the file will be overwritten.

Python
f = open("numbers.txt", "w")

f.write("First line")

f.close()

£ = open("numbers.txt", "r")

print (f.read())

f.closel)

- e e e e e e e R e e e e e e R e e R e e e R e e e e e e e e e e e e e e e e o o e

The code above opens the file, writes the given text to the file and closes it. Afterwards, the file

is open in read mode, the line is read and displayed, and then the file is closed.

read () will read the entire content of the file so, if the file contains several lines, as shown

below, they will all be displayed. Although this might seem an inefficient method, it can be

B2.5 File processing

used to read the entire content of the file into a data structure, such as a list, and then to

manipulate the data stored in the respective data structure.

Python

f = open('"numbers.txt", "w")

f.write("First line‘\n")

f.write("Second line\n")

f.closel()

f = open('"numbers.txt", "r")

print (f.read())

f.closel()

The \n will move the cursor on to the next line after a line of text has been written. To read a

single line of text, the readLine () function can be used.

print (f.readline())

f.closel()

1 1
i1 Python]
1 1
: f = open("numbers.txt", "w") :

1 f.write("First line\n") 1

: f.write("Second line\n") :

: f.closel() :

: f = open("numbers.txt", "r") :

1 1
1 1
1 1
1 1
[a

In the code above, although the file contains two lines of text, only the first one will be displayed.

To display every line of text in the file, a conditional loop can be used.

Python

try:

= open ("numbers.txt", "w")

.write("First line‘\n")

f

f

f.write("Second line\n")

f.close()

f = open("numbers.txt", "r")

text = f.readline()

while textl!="":

print (text)

text = f.readline()

except:

print ("There was a problem")

In the code above, a new line of text is read until the retrieved line is blank. As manipulating

files might produce several errors, such as the file not being found on the disk, or an operation

on the file being impossible to be completed, it is always a good idea to use exception handling

via try/except blocks.

B2 Programming

(;Top tip!

When creating

programs that

manipulate files, if you

are using a relative

path in your program,

ensure that both the

text file (txt) and the

coding file (.py or .exe)

are within the same

folder. If they are not

within the same folder,

the program won't be

able to access that file

unless the absolute

path is provided.

B2.5 File processing

f =

f.write("First line\n")

open ("numbers.txt", "w")

f.write("Second line‘\n")

f.close()

f = open("numbers.txt",

text = f.readline()

while len(text) !=0:

Ilrll)

print (text)

text = f.readline()

except:

print ("There was a problem")

The same result can be achieved by changing the condition of the loop to check whether the

retrieved line of text has a length different from 0.

Another way to do this is to use the following loop:

Python

try:

f = open("numbers.txt", "w")

f.write("First line\n")

f.write("Second line\n")

f.close()

f = open("numbers.txt", "r")

for line in f:

print (line)

except :

print ("There was a problem")

This would repeat for each line in the file and display it accordingly.

Sometimes, you might want to check whether the file exists before attempting to perform

an operation on it. This can be done by importing the os library and using the os.path.

exists command:

e
l
 |

Python

import os

if os.path.exists("numbers.txt"):

print('the file exists")

else:

print ("the file does not exist")

e e e R R R R R e R R R R R R R R R R R R R R R R R R R e R e e

1

1
1

1
1
1
1
1
1
1
1
1
1
Fl

It is very important to close the file once it has been manipulated for a given mode.

1 Construct a program that checks whether a given file exists (called name .txt). If the file

does not exist, the program asks the user what their name is, prints a personalized greeting

message to them and saves the person’s name into name.txt. If the file does exist, instead

of prompting for their name, it loads the name from the file and prints the personalized

greeting immediately.

2 Construct a program that uses a file to store a number to represent the number of times the

program has run. Every time the program runs, it should increase the number by one and

save the new value.

3 Construct programming code that generates 100 random numbers with values between 1

and 70. Store those numbers into a text file, one number per line. Call the file numb. txt.

4 Construct code that uses the numb.txt file to read the numbers, identify the number of

duplicate values and delete those duplicate values from the file. Output how many numbers

were deleted.

5 Construct code to append to the same file the exact number of elements that were deleted

in guestion 4, including values from 71 to 150.

6 Construct programming code to read the text file and sort the values in ascending order

using an efficient bubble sort algorithm.

7 Construct a program to read the values from the text file and identify the odd numbers. Store

those numbers into a new text file.

SssssEsssEsEssEssssssssEARNEEEANEsEIEEERSERRRERRERSE msssssssssssssssEssEsssEREEREsERERREEES s

@ Linking questions
1 Does database programming in SQL require computational thinking? (A3)

2 Why is an understanding of variables and their scope important for effective memory

management in computer systems? (Al)

3 Is algorithmic efficiency relevant to machine learning, where large data sets are processed,

and computational cost can be significant? (A4)

4 Are data structures, such as stacks and queues, applicable in networking algorithms for

packet routing and load balancing? (A2)

5 How can graph theory be applied to packet distribution in networks? (Mathematics A&l HL)

6 How do graph algorithms and terminologies, such as vertices and edges, impact machine

learning algorithms like network analysis? (A4, Mathematics A&I HL)

7 How can network traffic be used as an example or connection to programming

algorithms? (A2)

8 How can programming algorithms be used to develop machine learning methods? (A4)
IR B

E
s
s
s
s
a
s
s
s
E
s
s
s
s
s
s
s
s
E
R
s
s
R
a
E
R
E
R
E
R
E

R

s
 R

 s
 R

s
s

R

T

P

T

B2 Programming

1 Consider the following code that processes an input string:

Java

! public static void content (String text) { :

§ String value = "";

int pos = 0;

while (pos < text.length()) {

String letter = text.substring(pos, pos + 1);

if (letter.equals(",")) {

System.out.println(value) ;

: value = ""; :

i } else { i

: value += letter; i

pOsS++;

}
if (tvalue.isEmpty()) {

System.out.println(wvalue) ;

—
—

Python

def content (text):

value = ""

pos = 0

while pos<len(text):

letter = text[pos:pos+1]

if letter==",":

print (value)

value=""

else:

value = value + letter

pos = pos + 1

if wvalue:

print (value)

a Trace the algorithm for the input value of: “car,boat,ball” by copying and completing the following table, up to the

variable pos becoming 7. [4]

VALUE POS LETTER LETTER = *," QUTPUT

b Deduce the purpose of the algorithm. [3]

¢ The output is dependent on the exact format of the input. Identify two strings that would not generate the

desired output. 2]

B2.5 File processing

2 A group of friends play a round-robin tournament game of table tennis, where each person plays against each other player

for 5 minutes at a time. The information from the tournament is recorded in parallel arrays (lists), NAMES and SCORES,

examples of which are shown below.

When two people have their round against each other, each player records the points they win in their assigned row, in the

column for the person they are playing against. For example, in the data set below, when Annabelle played against Jack,

SCORES[0] [3] shows that Annabelle scored 4 points, and scorgs [3] [0] shows that Jack scored 8 points.

SCORES

NAMES 0 1 2 3 4 5

0 Annabelle 0 0 3 4 4 3 5

1 Benjamin 1 5 0 3 5 3 3

2 Claire 2 7 5 0 4 3 5

3 Jack 3 8 6 4 0 5 4

4 Fran 4 2 1 4 5 0 2

5 Mark 5 2 3 2 5 4 0

a Construct an algorithm that will declare and populate the NnaMES array (list), based on the example data above. 2]

b Identify the data type of the elements in the SCORES array (list). [1]

¢ Identify the winning player in the game between Claire and Benjamin. [1]

d Construct an algorithm that will print the names of players for every round, each player's respective scores and

who the winner was. If the game was a tie, output an appropriate message. For example:

Annabelle scored 3 vs Benjamin scored 5: Benjamin won

Annabelle scored 4 vs Claire scored 7. Claire won

[6]

e Construct an algorithm that will declare two new parallel arrays (lists) to keep track of a leaderboard based on net

points each player has won. Perform the calculations necessary to populate these arrays. The two parallel arrays

should be LeaderName and LeaderPoints. Each player’'s element in the LeaderPoints array should be the

total of points they won minus the total of points they conceded.

For example, the first two rows using the data above would be:

LeaderName LeaderPoints

Annabelle -5 (Annabelle won 19 points but conceded 24)

Benjamin 1 (Benjamin won 19 points and conceded 18) [8]

f Construct an algorithm that will sort the parallel arrays (lists) of LeaderName and LeaderPoints in descending

order of LeaderPoints. [6]

g Construct an algorithm that will save the parallel arrays (lists) of NAMES and SCORES to names.txt and

scores.txt text files. (4]

3 A company has exported its sales data from a spreadsheet to a couple of text files. NAMES.txt contains a list of the

names of its salespeople and SALES.txt contains a list of the total sales made by each person in the last month.

For example, the first few lines of each file may resemble the following:

NAMES txt SALES.txt

Amina 23424

Carlos 42549

Emily 52488

Hao 37562

Isabella 44770

a Construct an algorithm that will declare two parallel arrays or lists, NAMES and SALES, open the files and load

their content into the respective array or list. You may assume there is a maximum of 1000 entries in the file. [4]

b Construct an algorithm that will use a recursive quicksort to sort the two parallel arrays or lists by SALES in

descending order. [8]

¢ The content of the NAMES array (list) was iterated over with a loop, and its elements added into an empty stack

(element 0 was the first to be added to the stack). What can be said about the order of the NAMES that will be

popped off the stack in respect to their sales? [3]

B2 Programming

4 a Define the term "queue”. 2]

b Describe an application that uses a queue in a computer system. 2]

5 State the efficiency of the quicksort algorithm in Big O notation. [1]

6 Outline two uses of a stack in a computer system. [4]

7 Outline the differences between storing a queue in a linear form as opposed to a circular form. [4]

8 State which data type is best for storing a telephone number (e.g. 00352 661 008 990) and give two reasons. 3]

9 Arrays or linked lists can be used to implement stacks and queues.

a Describe the advantage of using an array to implement a stack or a queue. [1]

b Describe the advantage of using a linked list to implement a stack or a queue. [1]

10 The following list of numbers needs to be put into ascending order:

3,1,7,2,4,1,6

State the list that would be obtained after two iterations of a selection sort. [1]

11 Define the term “recursion”. [1]

12 Construct a program to calculate the sum of numbers from 1 to n using recursion. [4]

13 State one advantage and one disadvantage of recursion vs iteration. 2]

14 Consider the code shown below.

Java

public static void manipulate(int n, int[] a) {

al0o] = 15;

}
public static void main(String[] args) {

int[] a = {O, 1};

manipulate(3, a);

for(int i = 0; i<a.length; i++) {

System.out.println(alil) ;

Python

def manipulate(n, a):

alol= 15

manipulate (3,a)

'
1
1
1
1
1
1

a= [0,1] I
1
1
1

print (a) 1
1

a State the scope of the variable n. [1]

b Aninteger array (list) called b is initialized with the values {11,12,13,14}. The procedure manipulate is called

again with the parameters 14 and b. Explain why the assignment a[0]=15 in the body of the procedure changes

the values stored in the array (list) b. 3]

15 Consider the following data structure:

Pog oo TTTTTTTTmmmm e m e i
Java : 1 Python 1

: 1 1
int a = {1,2,3,4,5}; i 1 a = [1,2,3,4,5] 1

5 0 1
-4 [e e L L L L L T |

a State the name of the data structure. [1]

b Outline how the data value 3 can be directly accessed. [1]

B2.5 File processing

B3 Object-oriented
programming (OOP)

Fundamentals of OOP

for a single class

Object-oriented

programming: a

form of programming

that involves creating

code for classes of

objects, allowing many

such objects to be

created from a single

code base, achieving

a more modular and

extensible software

development process.

It is like the idea of

producing architectural

blueprints, from which

many similar houses can

be constructed.

Is OOP an appropriate paradigm for solving complex problems?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

B3.1.1 Evaluate the fundamentals of OOP

B3.1.2 Construct a design of classes, their methods and behaviour

B3.1.4 Construct code to define classes and instantiate objects

B3.1.5 Explain and apply the concepts of encapsulation and information hiding in OOP

B3.1.3 Distinguish between static and non-static variables and methods y
v
Y
y
v
v
y
w
y
y

B3.1.1 Fundamentals of OOP
Object-oriented programming (OOP) is a paradigm in Computer Science that increases

modularity by providing a new type of abstraction.

Just as you have experienced the benefits of modularity through writing functions that allow

you to standardize behaviour for a given combination of input parameters, OOP lets you take

this even further. It allows you not only to standardize behaviour, but also to standardize the

structure of the data within your code.

OOP achieves this level of modularity by empowering you to define custom data types,

known as “classes”. You are no longer constrained to basic data types like integers, floats and

strings; you can now craft custom variables of types such as Person, Book, BankAccount

or ShoppingBasket. Similar to creating various instances of integers or strings, you can

instantiate numerous instances of your classes.

When you manage existing dara types like strings and integers, they come with standardized

methods for setting their values and for manipulation. For example, with strings, you don't

need to program custom functions to extract substrings, locate the first occurrence of a

character or convert to uppercase or lowercase. These capabilities are inherent to the data

type. With OOP, you tailor functionality specitically for your class, creating methods that

align with the nature of the data it represents. Furthermore, similarly to using strings and

integers without knowledge of their internal storage mechanisms, the internal data structure

of your classes remains encapsulated, hidden behind the interface you provide as the creator of

the class.

B3 Object-oriented programming (OOP)

(®Tok
Are some types of

knowledge less open

to interpretation

than others?

The structured nature

of OQP, with its

defined classes and

behaviours, might

suggest it is less open

to interpretation

than more flexible

paradigms like

procedural

programming.

(;Common
mistake

Not thinking in

objects: OOP requires

a mental shift in

how to approach

your programming

problems compared

to procedural

programming. It is

very easy to fall back

into old habits. Try

to practise abstract

thinking and simplify

complex real-world

itemns into classes. It

can be hard to figure

out what should be

an object, a class or a

method at times, and

it will take practice to

get right.

B3.1 Fundamentals of OOP for a single class

B The advantages and disadvantages of using OOP in various
programming scenarios

There are numerous advantages to using OOP in your programming, including:

Increased modularity: Designing programming code around data and the functions that

manipulate it can make it easier to manage large code bases. Objects can be created and

modified independently of each other.

Code reusability: A class, once written, can be imported into other projects and reused

many times.

Encapsulation: Hiding the internal mechanisms through which a class manages its

internal data means that programmers only interact with the class through its well-defined

interfaces, such as publicly exposed functions, and don’t attempt to access the internal data

directly. Programmers trust the class to know how to update its own internal data. This

helps prevent unintended consequences resulting from managing data directly.

Scale: By allowing increased modularity and reusability, OOP allows projects to scale in

size yet remain maintainable.

Collaboration: Increased modularity also increases the ease for delegating ditferent parts of

the project to different team members, allowing more people to work on the same project

with ease.

It is worth acknowledging that OOP is not a perfect solution to all programming problems.

There are some potential drawbacks to be aware of, including:

Learning curve: OOP-related concepts, such as classes, objects and inheritance, can be

difficult to understand for beginner programmers.

Increased complexity: Small problems where a procedural approach would suffice can

become unnecessarily complex to implement in a purely OOP approach. This complexity

can also make projects more challenging to debug and maintain.

Overuse: OOP is good at solving certain types of problems, but it is not a one-size-

fits-all solution. Attempting to force everything to be viewed as an object of a class can

result in deep inheritance hierarchies, leading to code that can be difficult to understand

and maintain.

Overhead: OOP will typically introduce additional overhead in time and space

requirements compared to using paradigms with less abstraction.

Lack of optimization: The focus of OOP is on providing abstractions to improve

modularity. That comes at a cost in terms oforganizing code into constructs that are more

efficient for the CPU. In performance-critical applications, lower-level paradigms may be

more suitable.

Object-centric design limitations: OOP’s focus on objects can sometimes lead to

design limitations when dealing with certain problem domains. Some problems may

be better modelled using alternative paradigms, such as functional programming or

procedural programming.

So, while an important and valuable tool for any programmer, OOP is not a magic solution to

all programming needs.

.

.

.

T A T TR T

Is OOP necessary for all programming or just in the modelling of complex situations? (B2)

@ Linking question

T T PP

Bank accounts
To begin, study an example of how code that uses OOP may look. The following code is

based on a scenario of Bank Accounts. The process of creating variables (known within OOP

as “objects”), and then performing simple tasks with them, could be enacted through the

following code.

Python

amy = BankAccount ("Amy")

brian = BankAccount ("Brian")

clare = BankAccount ("Clare")

Do some transactions

amy.deposit (100)

brian.deposit (200)

clare.deposit (150)

amy .withdraw (75)

brian.deposit (75)

brian.transfer (250, clare)

Print account info

print (amy)

print (brian)

print (clare)

Java

class Main {

public static void main(String[] args) {

BankAccount amy = new BankAccount ("Amy");

BankAccount brian =

BankAccount clare =

// Do some transactions

amy.deposit (100) ;

brian.deposit (200) ;

clare.deposit (150) ;

amy.withdraw(75) ;

brian.deposit (75);

new BankAccount ("Brian");

new BankAccount ("Clare");

H

H
H H
H H H H

brian.transfer (250, clare);

// Print account info

System.out.println{amy) ;

System.out .println(brian) ;

System.out.println(clare) ;

B3 Object-oriented programming (OOP)

(;Top tip!

Use your UML

diagrams. UML

diagrams are your

blueprints. Sketch out

your Classes and their

relationships before

writing code. This may

seem unnecessary

at the start, but it

is a useful habit to

form early that will

pay dividends when

you are devising

increasingly large and

complex projects. As

you do, start with

the basic classes

that form the core

of your project and

then expand as

needed. Don't try

to add everything

at once as you will

overcomplicate it.

B3.1 Fundamentals of OOP for a single class

Notice that, without having to know anything about how these objects manage their internal

variables, you can understand the expected behaviour and reasonably estimate the output,

which may resemble the following:

Account “Amy" has balance $25

Account “Brian” has balance $25

Account “Clare” has balance $400

This is OOP at work. It allows you to create data types and write functions that are attached to,

and have access to, the information stored within.

B3.1.2 Designing classes, their
methods and behaviour
Before writing code, it is important to introduce the idea of the UML Class diagram. “UML"

(Unified Modelling Language) is the umbrella term for a series of standardized diagrams used

within Computer Science. These have been established to provide consistency in the design of

computing projects. One diagram within UML, the Class diagram, is used [or articulating the

design of an OOP Class.

A UML Class diagram looks like a table in three rows.

B Row 1: The Class name is specified in the top row for identification purposes.

B Row 2: The variables within each instance are listed in the second row, along with their

data type.

B Row 3: The methods associated with the Class are listed in the third row, including their

parameter signatures and return data type.

Compare the following tables to clarify. The left example provides a generic outline of

the Class diagram, whereas the example on the right could be an implementation of the

BankAccount Class.

Classname BankAccount

+ field: type — name: string

+ field: type —balance: float

+ field: type + BankAccount(name)

+ method(type): type + deposit(float): void

+ methoditype): type + withdrawf(float): void

+ methoditype): type + transfer(float, BankAccount): void

M Template and example of a UML Class diagram

Within UML Class diagrams, a final important element to note is with respect to visibility.

Notice that each element is preceded by a plus or minus sign. This indicates whether the

element should be set to public (plus sign) or private (minus sign). This will be discussed

further as part of B3.1.5 in the topic of encapsulation.

UML Class diagrams can also be used to depict relationships when classes are dependent on

one another. This is discussed further in B3.2.4.

You are expected to be able to create UML Class diagrams for classes trom code, and construct

code for a Class from its UML. There are practice exercises for you to complete at the end of

this chapter.

Instantiation:

the line of code that

declares a new object

variable based on the

template code provided

by a class, which then

executes the constructor

to initialize the object.

4 Constructor:

a special method

within a class that is

automatically executed

during instantiation;

its main task is to

initialize any instance

variables required before

an instance of the

object can be used by

other code.

B3.1.4 Coding classes and instantiating objects

B Creating the class
Instantiation is the process of creating a specific instance of a class, which is called an “object”.

There are two key tasks pertormed as part of the instantiation process: the allocation of

memory for the new object, and the execution of the constructor method.

The constructor is a special method whose role is to initialize a new object, with a specific

focus on any instance variables within the object. In Java, the constructor is identified by a

method having the same name as the class. In Python, the constructor is identified by the

name __init__ (). The constructor doesn't have a return type (technically, it is returning

the initialized object).

In Java, the this keyword is used to refer to the current object instance of the class. Tt

can be used to prefix any instance variable or method. It is particularly useful as a way of

differentiating between instance variables and local variables that may have the same name.

The this keyword is optional unless ambiguity exists, such as needing to differentiate

between an instance variable and a parameter variable.

In Python, the self keyword performs the task of referring to the current object instance

of the class. The self keyword is mandatory to prefix an instance variable or method.

Additionally, self must be listed as the first parameter for all methods belonging to the class.

When calling these methods in your code, you do not need to pass anything for that value;

Python will do it for you.

To illustrate the syntax of constructing classes in Java and Python, the following will serve

initially to construct the BankAccount example.

(;Tup tip!

VWhen naming your classes, it is standard practice to use a singular noun that represents the entity

the template represents. The methods (or functions) within that class should then be named as

verbs, indicating the action they will perform on the objects of the class.

In addition, the naming convention dictates the following for upper- and lower-casing of names:

® Class names: Capitalize all words (e.g. MyClass, BankAccount)

B Object instances: Camel case in Java (e.g. myObject) and snake case in Python

(e.g. my_object)

B Method names: Camel case in Java (e.g. calculateTotal) and snake case in Python

(e.g. calculate_total)

B Instance variables: Camel case in Java and snake case in Python.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
-

o S i s

i Python

: class BankAccount:

: def init_ (self, name):

1 self .name = name # Create an instance variable "name"

: # and set it to value parameter variable "name".

: self.balance = 0.0 # Set instance variable "balance" toc 0.0.

: def deposit(self, amount):

: self . balance = self.balance + amount

: def withdraw(self, amount):

: self . balance = self.balance - amount

L

B3 Object-oriented programming (OOP)

def transfer(self, amount, recipient):

self.withdraw(amount)

recipient.deposit (amount)

(self) :

return f"Account {self.name} has balance ${self.balance}"

def _ str

B T T T T LT T T T T T LT T PP PP TS

Java

public class BankAccount {

private String name; // Create an instance variable

private double balance; // Create an instance variable

public BankAccount (String name) {

this.name

this.balance = 0.0;

}
public wvoid

balance

1
public wvoid

balance

}
public wvoid

this.withdraw(amount) ;

recipient.deposit (amount) ;

}
publiec String toString() {

deposit (double amount) {

withdraw(double amount) {

transfer (double amount, BankAccount recipient) {

L
 |

= name // Set instance 'name' to value of parameter 'name'’

balance + amount;

balance - amount;

System.out.println(acc);

return "Account " = this.name + " has balance $" + this.balance;

}
}

B Creating an object
Creating an array is the process of declaring and instantiating an object variable based on the

class type. It is at this point that you pass any parameters required by the constructor.

The following example creates an instance of an object using the identifier name acc, of the

type BankAccount. You can treat acc just like any other variable from that point onward.

e T 3 penspes sy g ... f

i Python 1 Java :

! # Python . ! public class Main | :
: acc = BankAccount ("Neo") : E public static void main(String[] args) ({ i

: print (acc) : § BankAccount acc = new BankAccount ("Neo") ; E

[———— T :

B3.1 Fundamentals of OOP for a single class

B Creating an array of objects
When initializing an array of objects, it is important to note that each individual object still

requires its constructor function to be executed. This may require iterating over the entire

array to explicitly execute the constructor on each element. Some examples based on the

BankAccount scenario follow.

(;Top tip!

Because arrays contain multiple objects, their names should always be a plural of the object

contained within. In this case, it could be bankaccounts (Java's camelCase) or bank_accounts
(Python's snake_case).

Python

Python - example 1

accounts = [

BankAccount ("Amy"),

BankAccount ("Brian"),

BankAccount ("Clare")

1

Python - example 2

accounts = []

for i in range(0, 3):

name = input ("Name for new bank account:")

accounts.append(BankAccount(name))

// Java - example using static array

BankAccount [] accounts = new BankAccount [3];

accounts [0] new BankAccount ("Amy")} ;

accounts [1] new BankAccount ("Brian") ;

accounts [2] new BankAccount ("Clare");

// Java - example iterating over static array

String[] names = {"Amy", "Brian", "Clare"};

BankAccount [] accounts = new BankAccounts[3];

for (int i=0; i<accounts.length; i++) {

accounts[i] = new BankAccount(names[i]);

}
// Java - example using ArrayList

// Remember to import java.util.ArrayList

Arraylist<BankAccount> accounts = new

Arraylist<BankAccounts () ;

accounts.add (new BankAccount ("Amy"));

accounts.add (new BankAccount ("Brian"));

accounts.add (new BankAccount ("Clare")) ;

B3 Object-oriented programming (OOP)

B3.1.5 Encapsulation and
information hiding in OOP
Encapsulation is the idea that programming code outside of the class should not have direct # Encapsulation:

bundles data and access to the data within the class. You can visualize the data as being protected by a capsule

the methods that wrapped around it! The only way to permeate the capsule is through the methods the
manipulate that data class allows.

together into a single
- : By controlling access, encapsulation ensures that variables are only used in the manner in

object. It serves to hide
the implementation which they were intended, helping protect your code from invalid, error-inducing values. It

details of the object also means that you can write code that uses encapsulated classes without needing to know or

from outside code. care how the class manages its internal state.

Access modifiers: Successful encapsulation of your classes is fundamental to facilitating modularity in object-
the mechanisms

provided by the

programming language i ;

to control visibility of @ Linking question
methods and variables

within an object.

oriented programming.

L R LR T N R LI ETY

How can the principles of encapsulation and information hiding (B2.5) be applied to secure

network communication? (A3)

s
s
s
s
s
s
a
s

B Access modifiers
Encapsulation is achieved through using access modifiers. The structure of access modifiers is

different between Java and Python.

In Java, the access modifier is specified by supplying the relevant keyword in front of the

variable or method definition. There are four access modifiers to know:

B Private: Indicates it should only be accessible by the current object.

B Protected: Indicates that it may be accessed by the current object, and any objects that

inherit it (more on that in B3.2.1).

Public: Indicates it may be accessible to any code within your program.

Default: When no modifier is provided, it allows access for any object within the same Java

package (as denoted by the package statement at the top of your Java file); Python does not

have an equivalent of this.

In Python, access modifiers work slightly differently. They are specified through a naming

convention for your variables and methods. They can be bypassed. In this sense, they are

more guidelines than rules. That said, for the purposes of your course, you should avoid

bypassing them.

® Public: The default behaviour is thart variables and methods are treated as public.

B Internal use: The single underscore prefix (e.g. variable) is used to indicate it is

only for internal use within the class. While this is purely a convention, and the Python

interpreter does not enforce it, most Python editors strongly hint at not using these

variables by hiding them or making them less visible.

® Name mangled: The double underscore prefix (e.g. variable) is used to instruct the

Python interpreter to rename the variable or method at runtime. The name is mangled to

include the class name, which makes it harder (but not impossible) to access from outside

the class. For example, variable ina class named MyClass would be mangled to

_MyClass__variable.

B3.1 Fundamentals of OOP for a single class

Accessor: a public

method that allows

external code to

“access” the value of a

private instance variable

within an object; also

known as “getter

method” as it "gets”

the value.

Mutator: a public

method that allows

external code to update

or mutate the value of a

private instance variable

within an object; also

known as “setter

method” as it "sets”

the value.

4 Static: methods and

variables that belong

to the class, not the

individual objects. Only

one copy is created

that is shared with all

instances in common.

This might seem like it makes a variable private, but Python doesn’t have truly private

variables. Name mangling was created to avoid naming conflicts, rather than to enforce strict

access control. The mangled name can still be accessed from outside the class; it just requires

knowledge of the name-mangling pattern Python uses.

For the purposes of your course, you can treat either the single or double underscore prefix as

denoting private, but ensure you are aware of the technical subtleties involved.

B Accessors and mutators

By setting your variables to private, the inevitable consequence is you will need to create a

number of public methods through which code outside your class can interact with those

variables, query their value or request they be updated.

Methods that perform these tasks are formally known as accessors and mutators. They are

also often referred to as getters and setters.

For instance, if a Person class has variables for name and age, then there may be accessor

methods getName () and getAge (), as well as mutator methods setName () and setAge ().

Crucially, the example above serves to reinforce the important role that encapsulation can play

in protecting your data. You may not want it to be so easy to update a person’s name in your

application, and the person’s age may be calculated behind the scenes using the current date

and a stored date of birth, rather than just being stored as an integer that will soon drift to

being out of date.

Requiring accessor and mutator methods, rather than giving external code free access to your

variables, allows separation of responsibilities and keeps the class in control of what happens

to its data.

(.-Top tip!

For beginner programmers, the following is recommended good practice:

B Set variables to private where possible. Create accessor and mutator methods for any

attribute you want external code to have access to.

B Methods (or functions) should be public if you want external code to have access to them. If

the method is an internal helper function, set it to private.

Study the updated code for the Bank Account scenario in Section B3.1 to see inclusion of

access modifiers.

Research skills and thinking skills: Code analysis

Operation sabotage! Take a piece of OOP programming code and insert some deliberate

errors into it that break the principle of encapsulation. Swap with a classmate, and

refactor the code you are given to ensure proper use of encapsulation again. Discuss and

compare changes with your classmate afterwards. Did you both spot all the errors and

apply appropriate corrections?

B3.1.3 Static and non-static

variables and methods

The term static is used to represent variables and methods that are associated with the class

itself rather than any individual object instances.

B3 Object-oriented programming (OOP)

Static variables and methods don't require an instance to be created for them to exist. They

are created by the interpreter / compiler at runtime when the class is defined. This is why

the main function in Java is defined as static, as it needs to exist and be executed before any

objects have been created by the code itself.

Because statics do not depend on an object having been instantiated, it does mean that no

static method may access instance variables within an object. It also means that any time an

instantiated object makes use of a static variable or method, the objects are all accessing the

same shared variable or method instead of their own instance of it. Consequently, should an

object change the value of a static variable, that change will be visible to all other objects. You

can think of a static variable as a global variable that is shared in common with all the objects

of thar class. Static variables come in useful when somerhing needs to be shared across all

objects within a class, or when the particular variable does not depend on an instance existing.

The term “non-static”, therefore, refers to the normal instance variables you have been

defining within objects up until this point. Each object creates its own unique instance of

these variables so, when used by one object, it does not affect the value stored in the matching

variable of another object.

‘When referring to static variables and methods in code, it is best practice to prefix it

with the class name, for example ClassName . variableName (see the examples in

BankAccount below).

Using a static variable to track ID values

One common scenario for using a static variable is to ensure each object of a class has a unique

1D number. An example might be product numbers for a supermarket application.

E Python E

: class Product: :

: next product id = 0 # define a static wvariable :

1 def init (self, name):]

: self.name = name :

: self.product id = Product.next product_ id :

: Product.next product id += 1 :

i def _ str (self): !

: return "Product "+str(self.product id)+": "+self.name :

: if name == "_ main ": :

: products = [:

1 Product ("Bread"}, 1

' Product ("Milk"), i
: Product ("Apples"), :

: Product ("Icecream") :

1] 1

1 [
: for i in range (0, len(products)): :

: print (products[i]) :

B3.1 Fundamentals of OOP for a single class

! class Product |

private static int nextProductID

// wvariable

private String name;

private int productid;

: Product (String name)

}

"+this.name;

}
class Main {

this.name = name;

this.productID

Product .next Product ID++;

public String toString()

return "Product "+Integer.toString(this.productID)+":

Product .nextProductID;

0; // define a static

public static void main(String[] args) {

Product [] products = new Product[4];

products [0] = new Prcduct ("Bread");

products[1] = new Product ("Milk");

products[2] = new Product ("Apples");

products [3] = new Product ("Icecream"); H

for (int i=0; i<products.length; i++) {]

—

System.out.println(products[i] };

Using a static variable to track number of items in array (Java only)

In Java, another common usage of static variables is to keep track of the number of items

populated within an array. Given arrays are fixed in size, the static variable can be used to

ensure you place the next item at the next empty location. This is less of an issue in Python

since static arrays are not really a thing, and the list construct is dynamic in size.

Alternative approaches to this would be:

B having an if statement testing for null inside a loop

B using an ArrayList, since it is dynamically resizable.

B3 Object-oriented programming (OOP)

(;Top tip!

Remember that static

means one shared

item for the class, not

individual instances.

Only use static

for things that are

common to all objects

(like a company name),

and use normal, non-

static for properties

spedific to an instance

(like an employee

number). Experiment

with writing code

snippets to see the

effect of changing

members from static

to non-static, and

vice versa

@ Linking
question

In what ways can

QOFP (B1) be applied

to database (A3)

development?

Here is an example:

class Thing {

}

private string name;

Thing (String name) {

this.name = name;

public String toString() {

return this.name;

class CollectionOfThings {

private static int nextThing = 0; // static variable

private Thing[] things;

CollectionOfThings () {

things = new Thing[100]; // Create an array of 100

// null Things

CollectionOfThings.nextThing = 0;

}
public void add(Thing t) {

things|[Collecticon.nextThing] = t;

CollectionOfThings.nextThing++;

}
public wvoid remove (Thing t) {

boolean found = false;

for (int i=0; i<CollectionOfThings.nextThing-1; i++)

if (things[i].equals(t)) {

found = true;

}
if (found) ({

things[i] = things[i+1];

}
if (found) {

CollectionOfThings.nextThing--;

}
public void printAll()

for (int i=0; i<CollectionOfThings.nextThing; i++)

System.out.println(things[i]) ;

{

{

B3.1 Fundamentals of OOP for a single class

B3.1 End-of-section examples

Social skills: Paired programming

Paired programming is a research-based approach to help develop confidence in

beginner programmers. Work in pairs to design and implement your programming

projects, with one student writing the code while the other reviews it and suggests

improvements, switching roles periodically. Consider the analogy of having both a driver

and a navigator at the computer keyboard.

Hl Bank accounts
See below for the full code for the Bank Accounts scenario, updated to illustrate initialization

of an array, use of access modifiers and static with non-static variables and methods.

Notice two static variables and one static method have been implemented:

B interest rate: Asall bank accounts will have the same interest rate, it makes sense

for this to be static. That way, it only needs updating once, and all bank accounts will

automatically apply the change.

B next account number: By checking and incrementing this value every time an object

is created, it can ensure that no two bank accounts have the same account number.

® find(): Provides functionality to search an array of BankAccounts to find one of the

requested name (supplied through the parameters).

Python

class BankAccount:

interest rate = 5.00 # Static variable

next account number = 1001 # Static variable

def init (self, name):

self. name = name

self. balance = 0

Use the class name as a prefix to access the static variables

self. account number = BankAccount.next account number

BankAccount .next account number += 1

def deposit(self, amount) :

def withdraw(self, amount):

if self. balance < amount:

return False

self. balance -= amount

return True

def transfer({self, amount, recipient):

if self.withdraw(amount) :

recipient.deposit (amount)

return True

else:

return False

"

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

self. balance += amount :

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4

B3 Object-oriented programming (OOP)

def apply interest (self):

self. balance += self. balance * (BankAccount.interest rate / 100)

def get balance(self):

return self. balance

def get name(self):

return self. name

def str (self):

return f'"Account {self. account number}: {self. name} has balance

S{self. balance}"

@staticmethod

def find(accounts, name) :

for acc in accounts:

if acc.get_name() == name:

return acc

return None # No matching account found

Example usage:

if name == " main ":

r -

1 1
1 1
] 1
1 1
1 [
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
] 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
' 1
: # Tnitialize a list with 3 accounts :

: accounts = [BankAccount ("Amy"), BankAccount ("Brian"), BankAccount ("Clare")] :

1 # Perform some transactions 1
1 1
1 accounts [0] .deposit (500) 1

: accounts [1] .deposit (500) :

: accounts [2] .deposit (500) :

: accounts [0] .transfer (150, accounts[2]) :

: # Apply interest to all account balances :

: for acc in accounts: :

1 acc.apply interest () 1
1 - 1
1 # Perform transaction using a static method to search the list 1
1 1
1 amy = BankAccount.find(accounts, "Amy") f

: if amy: :

: amy .deposit (42) :

: # Print balances using the str methed :

: for acc in accounts: :

1 print (acc) 1
1 1
- a

public class BankAccount {

private static double interestRate = 5.00; // static variable

private static int nextAccountNumber 1001; // static wvariable

private String name;

private double balance;

private int accountNumber;

H H H H H H H H H

B3.1 Fundamentals of OOP for a single class b

public BankAccount (String name) {

this.name = name;

this.balance = 0;

// Use the class name as a prefix to access the static variables

this.accountNumber = BankAccount.nextAccountNumber;

BankAccount . nextAccountNumber++;

}
public void deposit(double amount) {

balance += amount;

}
public boolean withdraw(double amount) {

if (balance < amount) {

return false;

}
balance -= amount;

return true;

}
public boolean transfer (double amount, BankAccount recipient) {

if (withdraw(amount)) {

recipient.deposit (amount) ;

return true;

} else {

return false;

}
public void applyInterest() {

// balance is instance variable, interestRate is static wvariable

balance += balance * (BankAccount.interestRate/100);

}
public double getBalance() { H

// Since balance is private, this public function will allow external

// code to check the balance

return balance;

}
public String getName () {

// Since name is private, this public function will allow external code

// to get the name

return name;

}
public String toString() {

return "Account "+accountNumber+'": "4+name+" has balance $"+balance;

}
public static BankAccount find(BankAccount[] accounts, String name) {

for (BankAccount acc : accounts) {

if (acc.getName (}.equals (name)}) {

return acc;

B3 Object-oriented programming (OOP)

}

}
return null; // No matching account found;

public static void main(String[] args) {

// Initislize an array with 3 accounts

BankAccount [] accounts = new BankAccount [10];

accounts[0] = new BankAccount ("Amy") ;

accounts[1] new BankAccount ("Brian");

accounts[2] = new BankAccount ("Clare") ;

// Perform some transactions using array index

accounts[0] .deposit (500) ;

accounts[1l] .deposit (500) ;

accounts[2] .deposit (500) ;

accounts [0] .transfer (150, accountsl[2]);

// Bpply interest to all account balances

for (int i=0; i<3; i++) {

accounts [i] .applyInterest () ;

}
// Perform transaction using a static function to search the array

BankAccount amy = BankAccount.find(accounts, "Amy");

if (amy !'= null)

amy.deposit (42) ;

}
// Print balances using the toString() function

for (int i=0; i<3; i++) {

System.out.println(accounts[i]) ;

B Students and grades
Here is another complete example, this time also showing the use of objects as instance variables

within other objects. In this case, each Student object contains an array of Grade objects. Study

the example and identify the use of access moditiers, static and non-static variables.

Student Assessment

— gradeBoundaries : int[] — assessmentMame : String

— grades : charl] —score : double

- studentName : String + Assessment(String, double)
— assessments : ArrayListcAssessment> O + getScore() : double

— currentGrade : char + toString() : String

+ Student(String)

+ addAssessment(Assessment) : void

+ getAverageScore() : double

+ toString : String

M UML diagram of Student and Assessment Classes

B3.1 Fundamentals of OOP for a single class

Python

class Assessment:

def init (self, assessment name, score):

self. assessment name - assessment name

self. score = score

def get score(self):

return self. score

def _ str (self):

return f£'"{self. assessment name}: {self. score}%"

class Student:

_grade boundaries = [80, 65, 50, 35, 20]

_grades = ["A","B","C","D","E"]

def init (self, student name):

self.student name = student name

self. assessments = []

self.current grade = "N" # Default to N before any grades are added

def add assessment (self, assessment):

self. assessments.append(assessment)

Calculate new average

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Update current grade 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
£l o

e

e

e

e

e

e

R

R

R

M

R
M

e
M

R
R
R

M
M

R

M

M
M

R

M

M

N
 A

M

M
M

M

R
M

M

R
R

M

e

A
M

A
A

M
R

mm

A
e

e

average = self. get average score()

self.current grade = "N" # Start with the default

for i in range (0, len(Student. grade boundaries)):

if average »= Student. grade boundaries[i]:

self.current_grade = Student. grades[i]

break

def get average score(self):

if not self. assessments:

return 0

total = 0

for assessment in self. assessments:

total += assessment.get_score()

return total / len(self. assessments)

def str (self):

return f"sStudent {self.student name} has grade {self.current grade}"

if name == "_main_ ":

student = Student ("Doris")

student .add assessment (Assessment ("Test 1", 75))

student .add_ assessment (Assessment ("Homework", 85))

student.add assessment (Assessment ("Exam", 65))

print (student)

B3 Object-oriented programming (OOP)

Java

import java.util.ArrayList;

class Assessment {

private String assessmentName;

private double score; // Score as a percentage

public Assessment (String assessmentName, double score) {

this.assessmentName = assessmentName;

this.score = score;

}
public double getScore() {

return score;

}
public String toString() {

return assessmentName + ": " + score;

}
class Student {

private static final int[] gradeBoundaries = { 80, 65, 50, 35, 20 };

// Represents A, B, C, D, E

private static final char[] grades = { 'a', 'B', 'C', 'D', 'E' };

private String studentName;

private ArrayList<Assessment> assessments;

private char currentGrade;

public Student (String studentName) {

this.studentName = studentName;

this.assessments = new ArrayListes();

this.currentGrade = 'N'; // Default to N before any grades are added

}
public void addAssessment (Assessment assessment) {

assessments.add (assessment) ;

// Calculate new average

double average = getAverageScore();

// Update current grade

currentGrade = 'N'; // Start with the default

for (int i = 0; i < Student.gradeBoundaries.length; i++) {

if (average »= Student.gradeBoundaries[i]) {

currentGrade = Student.gradesl|[i];

break;

}

}
private double getAverageScore() {

if (assessments.isEmpty()) {

return 0;

}
double sum = 0;

H

H

H H

H
H H

H
H

H

H

H

: H

H

H

B3.1 Fundamentals of OOP for a single class

for (Assessment assessment : assessments) {

H sum += assessment.getScore(); :
>]

H return sum / assessments.size();

@0verride

}

Student

student

student

public String toString()

return "Student " + studentName + " has grade " + currentGrade;

public class Main {

public static void main(String[] args) {

.addAssessment (new Assessment ("Test 1", 75));

student .

student = new Student ("Doris");

addAssessment {(new Assessment ("Homework", 85));

.addAssessment (new Assessment ("Exam", 65));

System.out .println({student) ;

Self-management skills and thinking skills: Extend one of these sample projects

Using one of the sample projects provided as a starting point, add methods and variables

to provide supplemental functionality to the project. Create a checklist of skills you want

to add to the project, perhaps including the following suggestions:

B Reading and writing data to files so data is not lost between program execution.

m Adding a console user interface to provide interactivity and the capacity to use the

program to perform different tasks.

B Using a combination of static arrays and dynamic lists, as well as static and non-static

OOP methods and variables.

1 Which of the following is NOT an advantage of using OOP?

a Reusability of code

b Easy to debug

¢ Improved performance in all scenarios

d Encapsulation of data

2 What does abstraction in OOP help with?

a Removing all bugs from an application

b Hiding complex implementations behind simpler interfaces

¢ Decreasing the use of memory

-
8

Making code public to all classes

B3 Object-oriented programming (OOP)

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

a

b

c

d

3 In UML Class diagrams, there is a three-row box used to represent a Class. What does the

second row contain?

Class name

Methods

Properties

Statics

4 Which of the following is true about methods in a Class diagram?

They are depicted with a minus sign (=) for private methods

They cannot accept parameters

They must be static

They are opticnal

5 Which statement is true about static methods in Java?

They can be called on instances of a Class

They are called on the Class itself, not the instance

They can directly access and modify instance variables

They must return a value

6 What is a non-static variable also known as?

Class variable

Local variable

Global variable

Instance variable

7 What is the purpose of a constructor in a Class?

To declare variables

To initialize an object

To clean up resources

To return data

8 Which of the following declarations correctly creates an array of objects in Java?

ClassName[] arrayName = new ClassName[5];

ClassName arrayNamel] new ClassName(5);

ClassName arrayName = new ClassName[5];

ClassName[] arrayName = new ClassName();

9 Which of the following best describes encapsulation?

Storing data in public fields

Combining data and methods that operate on the data into a single unit or Class

Dividing code into various functions

Making all methods static

10 What are access modifiers used in OOP for?

To define how variables can be modified

To name methods and variables

To indicate static methods only

To control the visibility of Class members

11 Describe one disadvantage of using OOP.

12 Explain how encapsulation can benefit a software project.

13 Explain why a static method cannot access non-static fields or methods.

14 Explain the role of the new keyword in object creation.

15 Describe an example of how private access modifiers contribute to information hiding.

B3.1 Fundamentals of OOP for a single class

1 Library system

Create a simple library system where each book can be either available or borrowed. Implement methods to manage the

state of each book and track the total count of books in the library.

Java
class Book {

i private static int bookCount = 0;

private String title;

private boolean isBorrowed;

public Book(String title) {

this.title = title;

sr
rs

ss
es

ss
sa

ns

this.isBorrowed = false; :

; bookCount++; ;

: public void borrow() { :

if (l!isBorrowed) { :

isBorrowed = true;

System.out.println({title + " has been borrowed.");

} else {

System.out .println(title + " is already borrowed.");

f
a
s
e
s
s
a
s
s
r
s
s
r
R
t
i
s
s
s
e

}
public void returnBook() {

// Implement logic to mark the book as not borrowed

Cr
re
sn
as
re
s

}
public static int getBookCount() {

return bookCount;

}
public String toString() {

return title + " - " + (isBorrowed ? "Borrowed" : "Available");

}
public class Library {

public static void main(String[] args) {

Book[] books = new Book[5];

L

P
T
T

P
P

P
R

books [0] = new Book ("Java Fundamentals"); -

books[1] = new Book("The Art of Computer Programming") ; i

; // Add more books and implement borrowing logic :

a Complete the returnBook method.

b Instantiate more books and simulate borrowing and returning books.

¢ Print the status of all books and the total book count.

B3 Object-oriented programming (OOP)

2 Simple inventory system

Create a basic inventory management system for a store. Each product has an ID, name, price and quantity. Implement

functionality to add products, update inventory quantity and list all products.

¢ Java
i class Product {

private static int nextProductId = 100;

private int productId;

private String name;

private double price;

private int gquantity;

public Product (String name, double price, int quantity) {

this.productId = nextProductId++;

this.name = name;

this.price = price;

this.quantity = quantity;

}
public void updateQuantity(int amount) {

// Implement logic to update product guantity

}
@0verride

public String toString() {

return "Product{" +

"productId=" + productId +

", name='" + name + '\'' +

", price=" + price +

", quantity=" + quantity +

mhr

)
class Inventory {

private Product[] products;

private int size;

public Inventory(int capacity) {

products = new Product [capacity];

size = 0;

}
public boolean addProduct (Product product) {

if (size < products.length) {

products [size] = product;

size++;

return true;

}
return false;

B3.1 Fundamentals of OOP for a single class

public void listProducts() {

for (Product product : products) {

if (product != null) {

System.out.println(product) ;

}
public class Main {

public static void main(Stringl[] args) {

Inventory inventory = new Inventory(100);

inventory.addProduct (new Product ("Laptop", 999.99, 10));

§ inventory.addProduct (new Product ("Smartphone", 499.99, 20));

// Update quantities and list inventory

: }
}

a Implement the updateQuantity method in the Product class to adjust the stock of a product.

b Test adding products, updating quantities and listing all products to ensure the inventory displays correctly.

B3 Object-oriented programming (OOP)

Fundamentals of OOP

for multiple classes (HL)

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

» B3.2.1 Explain and apply the concept of inheritance in OOP to promote code reusability

» B3.2.2 Construct code to model polymorphism and its various forms, such as

method overriding

» B3.2.3 Explain the concept of abstraction in QOP

» B3.2.4 Explain the role of composition and aggregation in class relationships

> B3.2.5 Explain commonly used design patterns in OOP

EE I
o
Z
=<

B3.2.1 Inheritance and code reusability

(®TokK
How does the way that we organize or classify knowledge affect what we know?

The classification of knowledge into objects, classes and inheritance in OOP affects how problems

are approached and solved.

Inheritance: where

a class takes a copy Drawing from biology, inheritance is a concept that aims to ease code reuse in complex
of an existing class as

the starting point for

all its internal methods

and variables. These
can then be overridden “subclass”, whereas the origin class is known as the “parent class” or “superclass”.

projects. It does this by allowing construction of a class that derives (inherits) existing

functionality and properties from another, existing class. Once derived, you need only apply

whatever custom modifications are required. The derived class is known as a “child class” or

and extended upon Consider writing an QOP application for a coffee shop. The business might have a loyalty
to provide additional o i scheme requiring the storing of customer details in the system. It would likely also need to
functionality, as required.

store employee informarion to be able to pay them. While customers and employees would

Person dass have very different functions within the program, there

. * Name would be some commonalities as well, such as name
* Phone . .
« Email and contact details. Inheritance allows the programmer

- * Address to put these commonalities into a parent class called

Person, while putting the specialist functionality into

the Customer and Employee classes. The common code

contained within Person does not need to be reproduced;

Customer class Employee class . it is automatically available for any subclass that derives
* Name * Name from it

* Phone * Phone .

. * Email * Email In this scenario, the Person class would contain the
* Address * Address) . ,
« Membership « salary programming code responsible for any person’s name,

number * Bank account phone number, email and address. The Customer class

* Loyalty points * Supervisor
‘ inherits these basic properties and functions from Perscn

* Sign-up date] ‘
and then extends upon them by adding a membership

. number, the points the customer has accrued and their
B Inheritance

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
T
N
O
 T
H
 sign-up date. The Employee class likewise inherits the

basic properties and functions of Person and extends

Person them by adding salary and bank-account details, along

. with information about an individual employee’s
isa isa .

supervisor.

Customer Emplayee Drawn using UML, this inheritance relationship is denoted

via an “is-a” arrow pointing from the derived class to the

M Inheritance using UML parent class.

The following code blocks illustrate how to create these three classes in code. Note

particularly that:

B in Python:

[0 the invoking of the inheritance relationship occurs through the use of parenthesis

in the class definition, e.g. class Customer (Person) creates a class Customer,

inheriting from Person

O the constructor of the superclass must still be called; this must be the first line in the

subclass constructor, achieved through super () . init ()

B inJava:

0 the invoking of the inheritance relationship occurs through the use of the extends

keyword in the class definition, e.g. class Customer extends Person createsa

class Customer, inheriting from Person

O the constructor of the superclass must still be called; this must be the first line in the

subclass constructor, achieved through super ()

O the protected access modifier will allow the subclasses to directly access the instance

variables that have been defined within the superclass.

Python

class Person:

def init_(self, name, phone, email, address):

self.name = name

self .phone = phone

self.email email

self.address = address

def str (self):

return "Perscn: "+self.name

class Customer (Person): # The parenthesis indicates Customer inherits Person

def init (self, name, phone, email, address, membership, points, signup):

Call the constructor of the parent class

super (). init (name, phone, email, address)

Define other instance variables specific to this child class

self membership = membership

self.points = points

self.signup = signup

def _ str (self):

return "Customer: "+self _name+" has "+str(self.points)+" points."

B3 Object-oriented programming (OOP)

self.supervisor = supervisor

def str (self):

return "Employee: "+self.name+" earns $"+str(self.salary)

g e g S e ey e 5 e e e e e e s g g, e ey S e L]

: class Employee (Person): # The parenthesis indicates Employee inherits Person : s =
: def init (self, name, phone, email, address, salary, bankaccount, supervisor) : : O

: # Call the constructor of the parent class : E

: super (). init (name, phone, email, address) :

1 # Define other instance variables specific to this child class 1

: self.salary = salary :

: self .bankaccount = bankaccount :

1 1
1 1
1 1
] 1
] 1
1 1
L -

(i;Toptnfl

When first learning how to use dates and times in Java, you will discover a multitude of different

options. New approaches have evolved as the language has matured, while the old approaches had

to be retained for the language to be backwards-compatible for older projects. Since Java 8, the

java.time package is the recommended best practice approach for managing dates and times.

i Java

import java.time.LocalDate;

class Person {

// By using protected instead of private, these variables will be accessible

// by classes that inherit Person. Refer to the section on access modifiers

// for more.

protected String name; :

protected String phone;

protected String email;

protected String address;

Person(String name, String phone, String email, String address) {

this.name = name;

this.phone = phone;

this.email = email;

this.address = address;

}
public String toString() {

return "Person: "+this.name;

}
class Customer extends Person { // The "extends" keyword indicates inheritance

private long membership;

private long points;

private LocalDate signup;

: Customer (String name, String phone, String email, String address, long

! membership, long points, LocalDate signup) {

E // Call the constructor of the parent class

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
I
N
O
 T
H

)

}

class Employee extends Person { // The "extends" keyword indicates inheritance

salary, String bankaccount, Person supervisor) {

super (name, phone, email, address);

// Initialize other instance variables

this.membership = membership;

this.points points;

this.signup = signup;

}
@0verride

public String toString() {

return "Customer: "+super.name+" has "+Long.toString(this.points)+" points";

private long salary;

private String bankaccount;

private Person supervisor;

Employee (String name, String phone, String email, String address, long

// €all the constructor of the parent class

super (name, phone, email, address);

// Initialize other instance variables

this.salary = salary; i

this.bankaccount = bankaccount;

this.supervisor = supervisor;

}
@0verride

public String toString() {

return "Employee: "+super.name+" earns $"+Long.toString(this.salary);

T T T T T Ty T L LT LT T T T T T T T T T T T T T T PRI EETTT LTI TP TT P TP TP T T

(;Common mistake

Overusing inheritance can lead to tightly coupled code that is difficult to modify. Use inheritance

sparingly — only when classes share a logical and robust “is-a” relationship. If two classes do not

share enough functionality, consider alternatives such as composition.

o Research skills and thinking skills: Organize a class debate around the value of

(n Zé} inheritance. Does inheritance in object-oriented programming lead to better designed

NS and more efficient code, or does it overly restrict and limit flexibility?

B3 Object-oriented programming (OOP)

Polymorphism:

meaning “many forms”,

it allows objects

to exhibit different

behaviours based on

their specific class

implementation while

still adhering to a shared

interface or contract.

Python

if name ==

class Main {

System.

System.

System.

—

B3.2 Fundamentals of OOP for multiple classes (HL)

Person p =

Customer c =

example.com",

Employee e =

B3.2.2 Polymorphism and method overriding
Polymorphism refers to how related objects can perform the same rask or interaction in a

different way. “Polymorphism” is another term that Computer Science has taken from biology; it

refers to something that can take many forms (poly means many and morph means change form).

Overriding occurs when a child class creates a property or method of the same name as the

parent class, thereby overriding it.

You can see an example of polymorphism occurring in the example above. The Python

str () functions and the Java toString () functions are overridden in the child classes

of Customer and Employee. Creating main code of what follows will demonstrate that it is,

infact, the str () and toString () functions of the child classes that execute, rather

than those in the parent classes.

If str () /toString() was notdefined in the subclass, then the version that exists in

the superclass is what would be execured.

from datetime import datetime

" main ":

L

1
1
1
1
1
1
1
1 p = Person("Jordan McFly", "555 1234", "jordan@example.com", "1885 Brown

: Estate")

: c = Customer("Skyler Serenity", "555 2345", "skyler@example.com", "1701

1 Agimov Plaza", 1, 0, datetime.now())
1
1 e = Employee("Avery Shephard", "555 3456", "avery@example.com", "1955 Lone

i Pine Mall", 75000, "123-456-888", p)
- print (p)

: print (c)

1 print (e)
1
L e el e - - R el e e e I

Java

import java.time.LocalDate;

public static void main(String[] args) {

new Person("Jordan McFly", "555 1234", "jordan@example.com",

"1885 Brown Estate");

new Customer ("Skyler Serenity", "555 2345", "skyler®

"1701 Asimov Plaza", 1, 0, LocalDate.now());

new Employee ("Avery Shephard", "555 3456",

"avery@example.com", "1955 Lone Pine Mall", 75000, "123-456-888", p);

out.println(p);

out.println(c);

out.println(e);

I z
o
=
=<

A
T
N
O
 T
H
 These should render the following output, demonstrating the different versions of the

toString () function are executing.

Person: Jordan McFly

Customer: Skyler Serenity has 0 points

Employee: Avery Shephard earns $75000

o B Example uses
Two examples that illustrate the benefit of inheritance

\ combined with polymorphic overriding are:

Password: Date selector: File selector: Email: B Consider the variety in input boxes available for

[Emter possword | [admmivyy] [choose e] o fite chosen graphical user interfaces. The core functionality

M Inheritance in graphical user interfaces of a text input box can be written once, and then

inheritance can be used to use that functionality as

4 Cy the basis for more specialized input types, such as

PasswordInput, DateInput, FileInput or Emaillnput, where

N " some of the original code is overridden to provide the

new, specialized experience.

/ \ B Asecond example is in the area of game design. A

M Inheritance in game design

4 Overriding:

the process of

providing a different

implementation of a

method in a subclass,

which replaces the

original implementation

inherited from the

superclass.

° game that possesses multiple bots to play against

/ could have one generic bot with a random move

_/ strategy. Specialized bots could then inherit this

basic code and override the strategy function, or the

abilities function.

B Overriding default methods
Earlier in this section, you overrode the teString () / str () functions in Java and

Python respectively. These are automatically called whenever the context calls for a string

value from the object, such as being used by a print () method.

There are other default method names that are handy to know about so you can override their

behaviour when appropriate. Some of these are:

B inJava:

0 equals(Object obj): checks whether another object passed to it is “equal to” the

current instance; the default implementation checks for reference equality (i.e. whether

they point to the same object in memory) — overriding this method allows you to

compare the contents of two objects for logical equality

O hashCode (): returns an integer hash code value for the object, which is used by hash-

based collections like HashMap and HashSet; when you override equals (), you

must also override hashCode () to maintain the general contract for the hashCode ()

method, which states that equal objects must have equal hash codes — see Section B4.1.6

for an explanation of what this means

B in Python:

0O _ eq_ (self, other):called when the equality operator == is used to compare

two objects; overriding it allows for custom comparison logic

B3 Object-oriented programming (OOP)

0 _ _hash (self):returns an integer hash value for the object, and is used in

hashable collections such as sets and dictionaries; if you override _eq , you should

also override __hash__, ensuring that objects that are considered equal have the same

2 -
o
£
- hash value — see Section B4.1.6 for an explanarion of what this means

0O 1t (self, other), 1le (self, other), gt_(self, other),

__ge_ (self, other):used for comparison operators <, <=, > and >= respectively;

they are used by the sorted () function and other areas where there is a concept of an

ordering of objects

0O _ getitem (self, key), setitem (self, key, value),

delitem (self, key): called to retrieve, set or delete an item using the indexing

syntax obj [key]

0O iter (self)and next (self):used to make an objectiterable (usable in

a FOR loop, for example); iter should return an iterator object, which is typically

the object itself, and __next _ should return the next item or raise Stoplteration to

end the iteration.

Refer to the Java and Python documentation for examples of implementing each of the

methods above, as relevant.

B3.2.3 Abstraction and abstract classes

One common way of making use of inheritance and polymorphism is through the use of

abstract classes. Abstract classes can be thought of as generic templates without any executable

code of their own. They are classes that cannot be instantiated. They are designed to be

extended by other classes.

You use abstract classes when you know that all your subclasses should have certain methods

or fields, but the implementation of these methods is inherently specific to each subclass, such

that it doesn’t make logical sense to provide a default implementation.

While it doesn't provide any functionality, the abstract class provides standardization and

consistency in the implementation of subclasses; the benefit being that anyone using your class

hierarchy will know that certain methods are always available, and any new derived classes

need to adhere to the defined contract.

As an example, consider an application that needs objects to manage the properties of various

2D geometric shapes, such as a possible computer game. It makes sense to require that all

classes that implement a 2D shape have a function that returns its surface area, and another

that returns its perimeter. An abstract class of Shape can be defined thar stipulates these

requirements, as the following example demonstrates.

Notice that, because Python and Java can rely upon the contract associated with Shape, there

is no problem creating code that executes getPerimenter () and getArea () onan array

containing a mix of Rectangle and Circle objects.

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
I
N
O

T
H

Java

abstract class Shape{

public abstract double getArea();

public abstract double getPerimeter();

}
class Rectangle extends Shape {

protected double width; ;

protected double height; f

Rectangle (double width, double height) { H

this.width = width;

this.height = height;

}
@override // Specify we are overriding the abstract method

public double getArea() {

return this.width * this.height;

}
@0verride // Specify we are overriding the abstract method

public double getPerimeter () {

return 2 * (this.width + this.height);

p
u
—

)
class Circle extends Shape {

protected double radius;

Circle(double radius) {

this.radius = radius;

}
@0Override

public double getArea() {

return Math.PI*this.radius*this.radius;

} :
@0Override

public double getPerimeter() {

return 2*Math.PI*this.radius;

o

}
E class Main {

public static void main(String[] args) {

Shape [] shapes = new Shape[4];

shapes[0] = new Rectangle(10.0, 4.0);

shapes[1l] = new Rectangle(36.0, 7.0);

shapes [2] = new Circle(42.0);

shapes[3] = new Circle(10.0);

for (int i=0; i<shapes.length; i++) {

System.out.println(shapes[i] .getArea());

System.out.println({ shapesl[i] .getPerimeter());

)
BT T T T T T T T L LT T LT T T T T T TR TTT T T T

B3 Object-oriented programming (OOP)

Python

from abc import ABC, abstractmethod

import math

Shape: Abstract class in Python, inherits from ABC (Abstract Base Class)

class Shape (ABC) :

@abstractmethod

= = -
o
Z
-

def get_area(self):

pass

@abstractmethod

def get perimeter (self):

pass

Rectangle class, inherits from Shape

class Rectangle (Shape) :

def init (self, width, height):

self.width = width

self.height = height

def get_area(self):

return self.width * self.height

def get perimeter (self):

return 2 * (self.width + self.height)

Circle class, inherits from Shape

class Circle(Shape):

def init (self, radius):

self.radius = radius

def get_area(self):

return math.pi * self.radius ** 2

def get perimeter(self):

return 2 * math.pi * self.radius

Main section

if name == "_main_ ":

shapes = [

Rectangle (10.0, 4.0),

Rectangle (36.0, 7.0},

Circle(42.0),

Circle(10.0)

for i in range(len(shapes)):

print (shapes[i] .get area())

print (shapes[i] .get_perimeter())

B L L T L T T |

(.-Common mistake

Confusing the role of abstract classes

It is common to misunderstand the purpose of abstraction, and to use it where a simple base class

with inheritance might suffice. Use abstract classes when you have a base class that should not be

instantiated itself, but has comman code to share with the subclasses that are instantiated. Make

sure any subclass implements all the abstract methods from the abstract superclass.

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
T
N
O
 T
H

4 Composition: where

objects are composed of

other objects, forming

a "has-a" style of

relationship. The objects

that comprise the

internal objects cannot

exist independently of

the containing object.

Aggregation: where

one object "has”

another object as part of

it, but the two objects

can exist independently

of each other.

B3.2.4 Composition and aggregation
Because a class is analogous to a data type, and an object is analogous to a variable, you can

quickly end up with programs where an object contains many other objects of different classes

as variables within it, and this process can repeat itself into multiple layers of depth. When

this occurs, these different objects are said to be related to each other and dependent on

each other.

There are different ways of defining these dependent relationships. Inheritance, for example, is

a type of dependent relationship where the child class requires the parent class to exist as its

original source of properties and methods.

There are two other means of defining dependent relationships that we will look at now:

composition and aggregation.

H Composition

Composition is where one object is composed of one or more objects, and the composed

objects cannot exist without the containing object. This creates a strong “one is part of the

other” relationship, where the lifetime of the composed objects is managed by the container.

This can even be referred to as a “death relationship”, meaning if the whole is destroyed, its

parts are destroyed as well.

Some examples of composition relationships include:

B Car and Engine: A Car object is composed of an Engine object. The engine is an integral

part of the car. Outside of the car, it does not serve the purpose it was designed for. If the

car is destroyed, the engine is as well.

B House and Room: A House object is composed of multiple Room objects. Rooms are part of

a house: if the house is demolished, the rooms also cease to exist as functional units.

® Computer and Components: A Computer object is composed of CPU, Motherboard,

Memory, and so on. These components are parts of a computer and do not function

independently if separated.

B Human and Organs: A Human object is composed of a Heart, a Brain and Lungs. These

organs are essential parts of a human body, and they do not function outside the body.

Bl Aggregation
Aggregation is where one object contains one or more objects, but the contained objects can

exist independently without the “container”. Should the containing object cease to exist, the

previously contained objects may still exist in their own right. In this way, the lifecycle of the

contained objects is not managed by the containing object.

Some examples of aggregation relationships include:

B University and Student: A University contains many Student objects. 1f the university was

to close (or once a student completes their studies), the student continues to exist even

when no longer attached to the university.

® Library and Books: A Library contains many Book objects. The library has books, but the

books can exist outside of the library as well.

m Shopping Cart and Products: A Shopping Cart object contains multiple Product objects.

The shopping cart has products, but products are not dependent on the shopping cart for

their existence.

B3 Object-oriented programming (OOP)

(.-Common
mistake

Confusing

composition and

aggregation

It is very easy and

common to get

confused as to which

is which. The key

difference is the

lifecycle dependency

between objects. Use

composition when

objects are part of a

whole-of-lifecycle, and

aggregation when the

contained object can

exist independently.

B3.2 Fundamentals of OOP for multiple classes (HL)

® Computer System and Peripheral Devices: A Computer System object can have references

to Keyboard, Monitor, Mouse, and so on. The computer system has these peripheral

devices, but these devices can be used with other computer systems.

m Airline and Airplanes: An Airline has a fleet of Airplane objects. The airline owns

airplanes, but airplanes can be sold or transferred to other airlines and continue to operate.

Sometimes the distinction between composition and aggregation can seem arbitrary and open

for debate. Consider, for instance, the example of Car and Engine. In some contexts, such as at

amechanic’s garage, it could be argued the engine can be configured to function outside of the

car for testing purposes. This subtlety is where your understanding of the context of the

problem at hand is important: what might be correct for one question or scenario may be

different for another. (Note that, even in the mechanic’s shop, you could argue an Engine lacks

autonomy or control over its own lifecycle; it is the containing object — the mechanic’s garage

— that has that role in that edge case.)

B Relationships in UML
Composition and aggregation relationships can be depicted in UML diagrams using a

diamond-pointed arrow that is filled for composition, and hollow for aggregation.

Car ‘—Composition —_— Engine

University Student K >—— Aggregation ———————

M UML styling of composition and aggregation

Example

Consider the following scenario, where a Person object has an Address object as an

instance variable.

Person Address

+ name: string + number: int

+ home: Address + street: string
has a

+ email: string + locality: string

+ phone: string + postcode: string

+ state: string

M UML Person has an Address (aggregation)

Is this an example of composition or aggregation? Take a moment to consider before reading on.

The appropriate guiding question is: Can each exist independently of the other? While

ambiguity exists here and a case could be made either way, the situation would most likely

favour that of aggregation. The Person object, as the owning class, doesn’t have control over

the lifecycle of the Address. If a Person moves house, or is deleted from the application,

that Address may continue to exist. In this scenario, an Address may, in fact, be used

by multiple Person objects at once, so one Person ceasing to use it wouldn't have much

bearing on it at all.

A
I
N
O
 T
H

Singleton pattern:

a class that is designed

only ever to have ane

instance instantiated

throughout the lifecycle

of the program.

Factory pattern:

a design pattern that

provides an alternative

interface for creating

objects in contrast to

normal constructor-

based instantiation.

Social skills and thinking skills: Brainstorm relationships

Draw UML diagrams based on various real-world scenarios using composition and

aggregation, splitting the class into halves: one side being composition, the other

aggregation. Each side has to explain their rationale for why the scenario is an example

of their relationship. Whichever team comes up with the most scenarios wins.

B3.2.5 Design patterns in OOP

(.-TOK
What are the implications of having, or not having, knowledge?

In OOP, knowledge of design patterns, best practices and anti-patterns significantly impacts the

quality and maintainability of software.

Design patterns are common approaches to solving problems that are seen time and time again

in software design. They are best practices formulated by experienced object-oriented software

developers. Design patterns are useful because they provide tested, proven development

paradigms, thereby improving code readability, reusability and reliability.

Some of the most commonly used design patterns that are relevant for beginners in object-

oriented programming are the singleton pattern, the factory pattern and the observer pattern.

B L L L T T T T T T

@ Linking question
How can design patterns in QOOP facilitate the architecture of scalable and maintainable

machine learning models? (A4)

s
e
s
s
s
a
n
s

Ml Singleton pattern
When using a singleton pattern, there will only ever be one instance of the class. That one

instance will be made available globally throughout the project. It is often used for resource

management, such as maintaining an open connection to a database or network location, or

for sertings management. In these scenarios, there is no need for more than one instance to do

the job.

B Factory pattern
The factory pattern is used for providing a factory that can be used for creating a range of

similar objects that will adhere to a common interface.

A graphical user interface toolkit might use a factory method to create windows, buttons or

other Ul elements. For instance, a button factory can return buttons of ditferent styles using

a Primary, Secondary or Alert colour scheme, or perhaps completely different looks, such as

classic vs modern.

B3 Object-oriented programming (OOP)

4 Observer pattern:

provides a one-to-many

link between objects

to notify objects of

changes in state via

a subscription-style

service.

Java

/* those classes

interface School

}

}

/* The interface designs a contract specifying methods that must be provided by

void attendClass();

void doHomework () ;

void takeExam() ;

class StudentA implements School {

public void attendClass() {

System.out.println ("Student A attends class online via Zoom.");

public void doHomework() {

System.out.println("Student A does homework in the early morning with a

quiet background."); :

Hl Observer pattern
The observer pattern is used to maintain a list of dependent objects that have subscribed to

it so that they receive notifications when an event occurs. The observer pattern allows the

observing object to communicate changes to other objects that are interested in those changes.

This pattern is widely used in implementing distributed event handling systems such as in web

pages, where you might add event listeners to handle user input (clicks, keyboard events, and

S0 on).

M Interface
Before looking at how to apply each pattern, it is worth noting Java examples that demonstrate

the use of an interface. The interface is not in your syllabus, but a quick introduction is merited

as it is the right tool for the job to demonstrate these patterns.

An interface is a construct that defines a set of methods that implementing classes must

provide, without specitying how these methods should be implemented. It allows different

classes to interact with each other through a common set of behaviours, ensuring consistency

and interoperability. Interfaces are similar to, but not quite the same as, abstract classes. They

differ in the following ways:

B Interfaces do not store state (no instance variables). They simply define methods that need

to be implemented.

B A class can implement multiple interfaces, whereas using normal inheritance is limited to

only one parent class.

B Interfaces do not have constructors as they are not concerned with the logic of

implementation (no variables, remember). They are just focused on providing a list of

methods that require implementation.

An example might be an interface called School. This interface defines methods

attendClass (), doHomework (), takeExam (). Different students might implement

these methods differently, but they must implement all of them in one form or another.

that implement it. */

{

LT LT LT T T T T L T LT T T T T T T T T

B3.2 Fundamentals of OOP for multiple classes (HL) @

I z
o
=
=<

A
I
N
O

T
H

)

}

)

public void takeExam({) {

System.out.println("Student A prefers taking exams in a quiet

classroom. ") ;

}

class StudentB implements School {

public void attendClass() {

System.out.println("Student B attends class in person at the school."); i

}
public void doHomework() {

System.out.println("Student B does homework late at night with music

playing.");

}
public void takeExam() {

System.out.println("Student B takes exams online with cpen book

resources.") ;

public class Main {

public static woid main(String[] args) {

Studenth

StudentB

studenth

studentB

studentB

B TP PP PP TP PP

.attendClass () ;

studenth.

studentAh.

.attendClass () ;

.doHomework () ;

studentB.

student”A = new StudenthA();

studentB = new StudentB();

doHomework () ;

takeExam() ;

takeExam/() ;

B Application of design patterns

Singleton example

The following code is an example of a singleton pattern that can be used to provide access to

application settings that have been stored into a settings.json file. The example content of such

a file follows:

{
"databaseUrl": "postgresqgl://user:passwordehost:port/database",

"timecut": 10

}
Note: Java users, if you plan to implement this, you will need to add the org. json library.

Your IDE should allow you to easily add dependencies to other libraries.

B3 Object-oriented programming (OOP)

Python

import json

= = L
O
E
- class ConfigManager:

_instance = None

def new_ (cls):

if cls. instance is None:

cls. _instance = super (ConfigManager, cls). new (cls)

cls. instance.load settings{()

return cls._instance

def load settings(self):

try:

with open("settings.json", "r") as f:

self.settings = json.load(f)

-

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

except FileNotFoundError: :

print ("Error: The settings file was not found.") :

self.settings = {} ;

except json.JSONDecodeError: :

print ("Error: JSON decode error in settings file.") :

self.settings = {} !

def get_setting(self, key): 1
1

return self.settings.get (key) 1

if name == "_ main_ ": :

config manager = ConfigManager() # Initialize the singleton :

database url = config manager.get_ setting("databaseUrl") :

timeout = config manager.get_setting("timecut") :

print (f"Database URL: {database url}") :

print (£"Timeout: {timeout}") 1
1
-

import org.json.JSONObject;

import org.json.JSONTokener;

import java.io.FileInputStream;

import java.io.IOException;

import java.util.HashMap;

import java.util.Map;

public class ConfigManager {

private static ConfigManager instance;

private Map<String, Objects> settings;

// Private constructor to prevent instantiation

private ConfigManager() {

loadSettings () ; :

// Public method to get the instance

Srrrasrrrsasrrrasnrrinnteny D R R T R P T TP T T P PP TP T TP

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
I
N
O

T
H

public static synchronized ConfigManager getInstance() {

if (instance == null) {

instance = new CcnfigManager();

}
return instance;

// Load settings from file

private void loadSettings() {

try (FileInputStream inputStream = new FileInputStream("settings.json")) { i

JSONTokener tokener = new JSONTokener (inputStream) ;

JSONObject jsonObject = new JSONObject (tokener);

settings = toMap(jsonObject) ;

} catch (IOException e)

e.printStackTrace () ;

settings = new HashMap<>(); // Fallback to an empty map

}
// Helper method to convert JSONObject to Map

private Map<String, Object> toMap(JSONObject jsonObject) {

Map<String, Objects> map = new HashMap<>();

jsonObject .keys () .forEachRemaining (key -> map.put (key, jsonObject.get

(key)));

return map;

}
// Get a setting value by key

public Object getSetting(String key) {

return settings.get (key);

}
public class Application {

public static void main(String[] args) |{

ConfigManager configManager = ConfigManager.getInstance(); // Initialize

// the Singleton

String databaseUrl = (String) configManager.getSetting("databaseUrl");

Integer timeout = (Integer) configManager.getSetting("timeout");

System.out.println("Database URL: " + databaseUrl) ;

System.out .println("Timeout: " + timeout);

B3 Object-oriented programming (OOP)

Factory example

The following code is an example of the factory pattern.

Python

class Dog:

def speak(self):

return "Woof!"

class Cat:

def speak(self):

return "Meow!"

class AnimalFactory:

@staticmethod

def get_animal (animal_ type) :

elif animal type == "cat":

return Cat ()

return None

Usage

if name == " main ":

factory = AnimalFactory ()

dog = factory.get animal ("dog")

cat = factory.get_animal ("cat')

print (dog.speak()) # Output: Woof!

1
1
1
[
1
1
1
1
1
1
1
1
[
[
1
1
1
1
1
[

if animal type == "dog": 1
[
1
1
1
1
1
[
1
[
1
1
1
1
1
[
1
1
1
1

print (cat.speak()) # Output: Meow! :

]
]
]
]
]
1
1
1
1
1
]
]
]
1
1
1
1
I
]
1

: return Dog ()
]
]
1
]
]
]
1
1
]
]
]
]
]
]
]
1
1
1
1

B L T T LT T T L L L LT T T L L LT LT TN

Java

// Factory pattern example - Produce dogs and cats

interface Animal {

String speak();

}
class Dog implements Animal {

public String speak() {

return "Woof!";

}
class Cat implements Animal {

public String speak() {

return "Meow!";

}
Frrssssssessissssssssinnares T TR T T

T

T

T

P
P
P

P
P

P
PR
 P

PR

 T
P

B3.2 Fundamentals of OOP for multiple classes (HL) @

ze =
o
=
-

A
T
N
O

T
H

i return null;

public class Main {

Animal dog =

Animal cat

Observer example

class AnimalFactory {

public static Animal getAnimal (String animalType) {

} else if ("cat'.equalsIgnoreCase (animalType)) {

return new Cat(); i

System.out.println(dog.speak()]);

System.out.println(cat.speak());

; if ("deg".equalsIgnoreCase (animalType)) | E

return new Dog() ; :

// or throw an exception H

public static void main(String[] args) { E

AnimalFactory.getAnimal ("dog") ;

AnimalFactory.getAnimal ("cat") ;

// Output: Woof!

// Output: Meow! :

Finally, here is an example of the observer pattern at work:

Python

class NotificationService:

def init (self):

self. cbservers = []

def attach(self, observer):

def detach(self, observer):

def notify(self, message):

observer.update (message)

class Observer:

def update(self, message):

print (f'Received: {message}")

Usage

notifier = NotificationService()

cbserver a = Observer()

cbserver b = Observer()

notifier.attach(observer a)

notifier.attach(observer b)

notifier.notify("Hello World!")

self. observers.append (cbserver)

self. observers.remove (cbserver)

for observer in self. observers:

Output: Received: Hello World!

L]

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
1
1
1
|
1
1

from both 1
1
a

B3 Object-oriented programming (OOP)

Java

// Observer pattern example - notification service

= = L
[}
E
- interface Observer {

void update (String message) ;

class NotificationService {

private List<Observers observers = new ArrayListes();

public void attach(Observer observer) {

observers.add (observer) ;

1
public void detach(Observer observer) {

observers.remove (observer) ;

}
public void notifyObservers (String message) {

for (Observer observer : observers) {

observer.update (message) ;

}
class ConcreteCbserver implements Observer {

public void update (String message) {

System.out.println("Received: " + message);

—
—

}
// Usage

public class Main {

public static void main(String[] args) {

NotificationService notifier = new NotificationServicel(); :

i Observer observerA = new ConcreteObserver(); ;

i Observer observerB = new ConcreteObserver () ; i

notifier.attach (ocbserverd) ;

notifier.attach (observerB) ;

notifier.notifyObservers("Hello World!"); // Output: Received: Hello

// World! from both

—
—

1 In UML diagrams, which symbol is used to represent inheritance between two classes?

a A dashed line with an arrow

b Asolid line with a hollow arrow

¢ Asolid line with a filled arrow

d A dashed line without any arrows

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
T
N
O
 T
H
 What keyword is used in Java to inherit a class?

a Implements

b Extends

¢ Inherits

d Superclass

Which principle of OOP is primarily used to enhance code flexibility and maintainability

through interfaces?

a Encapsulation

b Inheritance

¢ Polymorphism

d Abstraction

What is required for method overriding to occur in object-oriented programming?

a The method must have the same name and different parameters in the subclass

b The method must have the same name and parameter list in the subclass, and be marked
with final

¢ The method must have the same name and parameter list in the subclass

d The method must have a different name but the same parameters in the subclass

Which statement is true about abstract classes?

a Abstract classes can be instantiated

b Abstract classes cannot have any method implementations

¢ Abstract classes can contain both abstract and implemented methods

d All methods in an abstract class must be abstract

What is the purpose of declaring a class as abstract?

a To force a class to provide implementations of all its methods

b To prevent the class from being instantiated directly

¢ To ensure that the class can only contain static methods

d To make the class available only to other classes in the same package

Which of the following best describes aggregation?

a A strong “has-a” relationship where the lifetime of the contained objects depends on the

lifetime of the container

b A weak "has-a" relationship where the contained objects can exist independently of

the container

¢ An "is-a" relationship between two entities

d None of the above

Which scenario is an example of composition?

a A library owns books

b A university has students

¢ An apartment building includes apartments

d A shopping cart contains products

Which design pattern ensures that a class has only one instance and provides a global point

of access to it?

a Factory pattern

b Singleton pattern

¢ Observer pattern

d Builder pattern

B3 Object-oriented programming (OOP)

10 In the observer design pattern, what is the role of the "Subject”?

a To notify all observers about any changes

b To keep track of all dependencies

= = -
o
Z
-

¢ To update the state of various subjects

d To request updates from observers

11 Describe why inheritance is considered a powerful feature of OOP.

12 Discuss how polymorphism enhances software maintainability.

13 Discuss two benefits that abstract classes provide over using normal inheritance.

14 Outline an example, not based on any given in this book, that illustrates the difference

between composition and aggregation.

15 Describe the factory design pattern and give an example of its use.

Some exercises require you to download files for processing or performing calculations. Those files can be downloaded from:

https://github.com/paulbaumgarten/hodder-ibdp-computerscience

1 Extend bank accounts

Implement the bank account example provided at the end of Section B3.1, and debug any transcription errors to ensure it

behaves as expected before continuing.

O Download the following files from the B3 folder in the Github repository:

* names.txt

* bank-transactions.txt

Use the file reading techniques from B2.5 to read each file into an array of strings (one string per line of the file).

Create an array of bank accounts, one for each person in your array, from the names.txt file.

Process the list of transactions in bank-transactions.txt.

Apply interest calculations on all accounts.

Print all accounts’ final balances. o
o
o
o
o

Do you get the correct final balances for your account holders, as shown below?

Account 1001: Eustolia has balance $5571.3 Account 1014: Hilma has balance $258.3

Account 1002: Nathan has balance $9515.1 Account 1015: Irving has balance $76.65

Account 1003: Milissa has balance $61.95 Account 1016: Carie has balance $2654.4

Account 1004: Willie has balance $1912.05 Account 1017: Nicky has balance $297.15

Account 1005: Hoyt has balance $4697.7 Account 1018: Adele has balance $3287.55

Account 1006: Alexandria has balance $2461.2 Account 1019: Carlene has balance $882.0

Account 1007: Clelia has balance $3311.7 Account 1020: Hermina has balance $2.1

Account 1008: Alpha has balance $1942.5 Account 1021: Ayana has balance $586.95

Account 1009: Delbert has balance $4670.4 Account 1022: Frederica has balance $261.45

Account 1010: Boyd has balance $547.05 Account 1023: Arianna has balance $541.8

Account 1011: Milton has balance $2331.0 Account 1024: Zandra has balance $725.55

Account 1012: Vivan has balance $1275.75 Account 1025: Vina has balance $2553.6

Account 1013; Constance has balance $2983.05

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
T
N
O
 T
H
 2 Flight reservation system

You are constructing a ticket reservation system for a budget airline. This airline doesn't have seating classes (no first class

or business class — everyone sits in economy), and doesn't accept seat reservations. The only thing the airline is interested in

is ensuring enough seats are available on each flight for the tickets it sells.

You are taking over from another programmer who started designing your classes for you. The following is the UML

they created.

Flight Ticket

— flightNumber: String — name : String

— capacity: int 0_ + Ticket(name)

— tickets: Ticket[] + getName() : String

— ticketsSold + toString() : String

+ Flight(flighthumber, capacity)

+ addTicket(Ticket) : Boolean

+ removeTicket(Ticket) : Boolean

+ getSeatsAvailable() : int

+ printPassengerList() : void

B UML Flight and Ticket

Create the Ticket class and Flight class in code, to adhere to the following rules:

[0 The capacity variable in the Flight constructor indicates the number of seats available on a given flight. Use this

variable to determine the size of your tickets array.

O Implement addTicket() and removeTicket() to add or remove a ticket from the tickets array. ticketsSold

should increment whenever a new ticket is added, and decrement whenever a ticket is removed. Refer to the

CollectionOfThings example in Section B3.1.3 for hints on how to implement this.

[0 getSeatsAvailable() should just be the result of capacity minus ticketsSold.

[0 printPassengerList() should print a list of all the names of tickets for a given flight.

The following code is example main code for testing the result, and an indication of what the output should resemble.

Python

if _ name

cx619 = Flight("CX 619", 280) # Cathay - HKG-SIN

aa6914 = Flight("AA 6914", 266) # American - JFK-LHR

ek89 = Flight ("EK 89", 354) # Emirates - DBX-GVA

jordan = Ticket ("Jordan Deckard")

cx619.addTicket (Ticket ("Taylor Ripley"))

cx619.addTicket (jordan)

cx619.addTicket (Ticket ("Casey Nec"))

aa6914.addTicket (Ticket ("Cameron Quaid"))

aa6914.addTicket (Ticket ("Phoenix Andor"))

cx6l9.printPassengerList ()

== " main ":

print (cx619.getSeatsAvailable())

cx619.removeTicket (jordan)

cx619.printPassengerList ()

1
1
1

1
1

1

1
1

1
1

1
1
1

1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
-

B3 Object-oriented programming (OOP)

class Main {

public static void main(String[] args) {

Flight cx619 = new Flight("CxX 619", 280); // Cathay - HKG-SIN

: Flight =aa6914 = new Flight ("AA 6914", 266);

§ // Bmerican - JFK-LHR

3 Flight ek89 = new Flight ("EK 89", 354); // Emirates - DBX-GVA

Ticket jordan = Ticket ("Jordan Deckard");

cx619.addTicket (new Ticket("Taylor Riplev")}});

cx619.addTicket (jordan) ;

cx619.addTicket (new Ticket ("Casey Neo"));

aa6914.addTicket (new Ticket ("Cameron Quaid"));

aa6914.addTicket (new Ticket ("Phoenix Andor")) ;

cx619.printPassengerList () ;

System.out.println(cx6l9.getSeatsAvailable(}) ;

cx619.removeTicket (jordan) ;

i cx619.printPassengerList () ;

System.out.println(cx6l9.getSeatsAvailable());

—
—

Anticipated output:

Flight CX 619 has passengers:

Taylor Ripley

Jordan Deckard

Casey Neo

277

Flight CX 619 has passengers:

Taylor Ripley

Casey Neo

278

3 School enrolments and grade book

Implement the students and grades example as provided in the end of Section B3.1, and debug any transcription errors to

ensure it behaves as expected before continuing.

Extend the scenario to include a new class called “Course” that contains an array of students who are enrolled in it.

[0 Course should contain an addstudent() and removeStudent () method.

1 Course should have the following additional functions:

* printClassList() generates a list of all student names (in name sort order)

* getClassaAverage() returns the average of all student scores.

B3.2 Fundamentals of OOP for multiple classes (HL) @

7 -
o
=
-

A
I
N
O
 T
H
 4 Library system

Create a system to manage book loans for a library.

Book Patron

—isbn : String —name : String

—title : String % — books : Book|]

—author : String — booksOnLoan : int

— publisher : String

— publicationDate : String
+ Patron(String)

+ borrowBook(Book) : Boolean

+ Book(String, String, String, String, String) + returnBook(Book) : Boolean

+ getISBN() : String + getBooksOnLoan() : int

+ getTitle() : String + printBooksOnLoan() : void

+ getAuthor() : String

+ getPublisher() : String

+ getPublicationDate() : String

B UML Book and Patron

[Create a Book class and Patron class, as per the UML diagram.

0 Download the following files from the B3 folder in the Github repository:

* names.txt

* books.txt or books.csv

* library-transactions.txt

[0 Use the file reading technigues from Section B2.5 to read each file into an array of strings.

[Create an array of patrons, one for each name in your array from the names.txt file, and create an array of books based

on the data in books.txt.

[J Process the list of transactions in library-transactions.txt, subject to the following:

* Fach patron can only have a maximum of three books on loan at a time.

* If a patron attempts to borrow a fourth book, it should be denied.

* A book can be borrowed more than once at a time (imagine there are unlimited copies of each book).

At the end, print a summary of each patron’s current books. The final list starts with:

Person Eustolia has these books:

m 9780141030142 Memory Keeper's Daughter,The

= 9780099387916 Birdsong

= 9780006498407 Angela’s Ashes:A Memoir of a Childhood

Person Nathan has these books:

m 9780099419785 To Kill a Mockingbird

m 9781904994497 Guinness World Records 2010

m 9780140237504 Catcher in the Rye The

Person Milissa has these books:

= 9780701181840 Nigella Express

m 9780099450252 Curious Incident of the Dog in the Night-time, The

Person Willie has these books:

m 9780563384304 Delia's How to Cook:(Bk.1)

® 9780590112895 Subtle Knife The:His Dark Materials

B 9780747581109 Harry Potter and the Half-Blood Prince

How many times did someone attempt to borrow a book over their limit? You should get 1125.

How many books are on loan at the end of the sequence? You should get 51.

B3 Object-oriented programming (OOP)

5 Social-media platform (HL)

Use the following UML as the basis for creating an OOP application for a social-media platform.

User Post

— username : String — comments : Comment]] Comment

— displayName : String — likeCount : int
— comment : String

- profilePic : String + Post() @ —author: User
— posts : Post] th d settel

- - - *+getiers and s rs. + Comment(5tring, User)
+ User(String, String, String) + newComment(String, User) + getters and setters

+ newTextMessage(...) + newlike() : void

+ newPictureMessage(...)

+ newVideoMessage(...)

+ getPostCount() : int Extends Extends Extends

+ getPost(int) : Post /

+ newComment{ int, String, User)

+ newLike(int) TextMessage PictureMessage VideoMessage

— message : String — pictureURL : String - youtubelLink : String

+ TextMessage(String) + PictureMessage(String) + VideoMessage(String)

+ getters and setters + getters and setters + getters and setters

B UML social-media platform

For a Java implementation, you may assume the maximum number of posts per user is ten, and the maximum number of

comments per post is ten.

Your final program should be able to:

O create a new user

O allow a user to create a post, via their user object’s .newTextMessage|(), .newPictureMessage() or

.newvVideoMessage() function

O allow a comment to be added to any post via the user object’s .newComment () function, where the integer value

represents the index of the relevant item in the posts array, and the String, User parameters are then passed to the

posts[i].newComment (String, User) function.

The user object’s .newLike() works similarly, using the integer as the index of the post, to then call the .newLike()

on the relevant item in the posts array.

The following code is test code for your main function:

e e i R e e T e e Ty S R e e

E Python

: import random

1 if name == "_ main ":

: frodo = User("frodo", "Frodo Baggins", "frodo.png")

: gandalf = User("gandalf", "Gandalf the Grey", "gandalf.png")

: samwise = User("samwise", "Samwise Gamgee", "samwise.png")

: aragorn = User("aragorn", "Aragorn", "aragorn.png")

: # Create posts

1 frodo.new text message("Just finished my gquest to destroy the One Ring.

: What an adventure! #MissionAccomplished #RingBearer")

: frodo.new _picture message("Pic of me after the quest! #MountDcocom #Mordor")

: aragorn.new_text message ("Reunited with my love, Arwen. Forever grateful

: for her love and support. @ #Elessar #LoveAndDestiny")

o o e o R RN M R R RN MM MR MR RN M M N NN MR NN RN NN M NN NN N NN NN NN RN NN NN N NN NN NN RN NN NN MM N N NN NN NN N N NN N RN Mm RN W A B
o

e

e

e

e

e

o
o

o
o
o
l

B3.2 Fundamentals of OOP for multiple classes (HL) @

e z
o
=
=<

A
I
N
O

T
H

L
l

T

T

gandalf .new video message("Just having some fun with my staff and

showing off a little wizardry on the dance floor! g+ #GandalfTheDancer

#WizardGrooves")

Create comments

frodo.new_comment (0, "Mr. Frodo! I'm so proud of you! You're the bravest

hobbit I know. #TrueFriendship #HobbitHerces", samwise)

frodo.new_comment (0, "Frodo, you have my gratitude and respect. Your

sacrifice has saved Middle-earth. #KingOfGondor #HeroicDeeds", aragorn)

frodo.new_comment (0, "Well done, Frodo! You've shown incredible strength

and determination. The world is safer because of you. #RingDestroyer

#WizardPride", gandalf)

frodo.new_comment (1, "Who's that great locking bloke next to you?",

samwise)

frodo.new_comment (1, "Amazing!", aragorn)

aragorn.new_comment (0, "Aragorn, may your love with Arwen be as enduring

as the light of the Silmarils. #LoveAndHope #FellowshipForever", frodo)

aragorn.new comment (0, "Aragorn, you have found true love. Cherish it

always. #Shzeldmaiden #HappilyEverAfter", gandalf)

gandalf .new_comment (0, "Love it! #WizardsCanDance", frodo)

gandalf .new comment (0, "rofl", samwise)

Create likes

frodo.new_like (1)

frodo.new_like (1)

aragorn.new_like (0)

r = random.randint (1001, 2000)

for i in range(r):

gandalf.new like(0)

class Main {

public static void main(String[] args) {

User frodo = new User("frodo", "Frodo Baggins", "frodo.png");

User gandalf = new User("gandalf", "Gandalf the Grey", "gandalf.png");

User samwise = new User("samwise", "Samwise Gamgee", "samwise.png");

User aragorn = new User("aragorn", "Aragorn", "aragorn.png");

// Create posts

frodo.newTextMessage ("Just finished my quest to destroy the One Ring.

What an adventure! #MissionAccomplished #RingBearer");

frodo.newPictureMessage ("Pic of me after the quest! #MountDoom

#Mordor") ;

aragorn.newTextMessage ("Reunited with my love, Arwen. Forever grateful

for her love and support. @ #Elessar #LoveAndDestiny");

gandalf .newVideoMessage ("Just having some fun with my staff

and showing off a little wizardry on the dance floor! g+

#GandalfTheDancer #WizardGrooves");

T T T T LT T T T T T LT T T LT T T Ty

Java

import java.util.Random;

Er
ss
ss
se
ss
sr
Ir
sE
ss
sE
sE
Ea
ta
NE
at
e
s
 a
a

R

ar
ay

B T T L L LT T T TP T T PP PP PP

H

H

H H
: H H H

H H H H

H
B

B3 Object-oriented programming (OOP)

// Create comments

frodo.newComment (0, "Mr. Frodo! I'm sc proud of you! You're the

bravest hobbit I know. #TrueFriendship #HobbitHeroes", samwise);

frodo.newComment (0, "Frodo, yvou have my gratitude and respect. Your

sacrifice has saved Middle-earth. #KingOfGondor #HeroicDeeds", aragorn);

frodo.newComment (0, "Well done, Frodo! You've shown incredible

strength and determination. The world is safer because of you.

#RingDestroyer #WizardPride", gandalf);

frodo.newComment (1, "Who's that great looking bloke next to you?",

samwise) ;

frodo.newComment (1, "Amazing!", aragorn);

aragorn.newComment (0, "Aragorn, may your love with Arwen

be as enduring as the light of the Silmarils. #LoveAndHope

#FellowshipForever", frodo);

aragorn.newComment (0, "Aragorn, you have found true love. Cherish it

always. #Shieldmaiden #HappilyEverAfter", gandalf);

gandalf .newComment (0, "Love it! #WizardsCanDance", frodo);

gandalf.newComment (0, "rofl", samwise);

// Create likes

frodo.newLike (1) ;

frodo.newLike (1) ;

aragorn.newLike (0) ;

Random random = new Random() ;

int randomNumber = random.nextInt (1001) + 1000;

for (int i=0; i<randomNumber; i++) {

gandalf .newLike (0) ;

1 Customer loyalty system

A chain of stores has launched a new customer loyalty program, where each dollar customers spend accrues loyalty paints

that can be exchanged for discounts on future purchases. An object-oriented program has been created to manage the

loyalty program.

The following classes exist in the system:

[0 Customer: Represents customer information, including a list of all their purchase history items

O Transaction: Represents the purchase of a single item by a customer.

The UML diagram for the Customer class is provided below:

B3.2 Fundamentals of OOP for multiple classes (HL) @

= x
]

=
=<

A
I
N
O
 T
H

Customer

—int id

— String name

—long balance

— Transaction(] history

—long historyltemCount

+ Customer (int id, String name)

+ void

+ Boolean

+ Transaction

+ Transaction

addTransaction(Transaction item)

spendPoints(String description, int points)

getTransactionBylD(int id)

getTransactionByDesc (String description)

getBalance()

(Up to 10,000 items)

+ long getName()

+ 5tring

B UML Customer class

a State the relationship between Customer and Transaction. []

b Construct a simplified UML diagram showing the relationships between Customer and Transaction. 2]

¢ OQutline the significance of the minus sign in front of long balance in the UML diagram. 2]

d Construct the code for the constructor of Customer. [3]

A Transaction object has two properties: a string containing a description of the item purchased and a long integer

containing the cost / value of the item in dollars (you can assume cents are not used). The following code forms the

basis of the Transaction class:

Python

class Transaction:

def init (self, description, points):

self . description = description

self .points = points

Getters and setters for description and points

i Java
public class Transaction {

private String description;

private int points;

public Transaction(String description; int points) {

this.description = description;

this.points = points;

// Getters and setters for description and points

}

B
T

T

T

Additionally, the following code describes the functionality of the addItem(Transaction item) function inthe

Customer class:

B3 Object-oriented programming (OOP)

Python

def add item(item):

r

1
1
1
1
1
: history[self.history item count] = item

: self . history item count += 1

1 self .balance += item.get points()
1
-

To improve the efficiency of searching for transactions within each customer object, it has been decided to create a

sort() function within Customer that will sort the transactions alphabetically by description. This algorithm will use a

h Now that the history array is sorted, construct new code for getTransactionByDesc(String description)

i The spendPoints() function should first check whether the customer has enough points for the transaction and

return false if not. Assuming enough points exist, it should create a new Transaction object that is added to the

j The getBalance() function should iterate over all items in the history to calculate the correct balance, then

update the value stored in the balance property appropriately, and finally return that value. Construct the code for

t = new Transaction(250, "Special deal")

Create list of 10 None items to replicate an empty array

customers = [None for in range(10)]

customers = Customer (0, "Ava")

customers Customer (1, "Brian'")

Customer (2, "Cherry")

0]

1]

customers [2]

0] .add _item(50, "Burger meal deal")

0]

1]

1]

customers

.add item(Transacticn (100, "Birthday becnus"))

customers .add_item(200, "Bluetooth earphones")

.spend points (50, "Discount feor shopping")

2] .spend_points (80, "Discount for shopping")

[

[

[

[

customers [

[

customers [

[customers

customers [2] .add item(t)

print(customers[0] .get_balance ())
print(customers[l].get_balance())

print(customers[2] .get_balance())

) print(customers[2].get_balance()

Java

i public void addItem(Transaction item) {

é history[historyItemCount++] = item;

: balance += item.getPoints();

}

e Describe the purpose of the historyItemCount property. 2]

f Construct the code for the getTransactionByDesc(String description) function using a linear search. [4]

selection sort for the task. Construct the code for the new sert () function to be added to the Customer class. (6]

that will implement a binary search algorithm. [5]

history, and deduct the points spent from the balance. Construct the code for the spendPoints() function. [6]

the getBalance() function. (6]

k Themain() of the program contains the following test code. State the output from this block of code. [4]

i i e i B e 8 e s S e T e

Python

if name == "_main_":

B3.2 Fundamentals of OOP for multiple classes (HL) @

= = L
[}
E
-

A
I
N
O
 T
H
 . H

5 5
public static void main(String[] args) {

Transaction[] t = new Transaction (250, "Special deal");

Customer[] customers = new Customer[10];

customers[0] = new Customer (0, "Ava");

customers[l] = new Customer(l, "Brian"); E

customers [2] = new Customer (2, "Cherrvy");

customers [0] .addItem (50, "Burger meal deal");

customers [0] .addItem(new Transaction (100, "Birthday bonus"));

customers [1] .addItem (200, "Bluetooth earphones");

customers [1] .spendPoints (50, "Discount for shopping");

customers [2] .spendPoints (80, "Discount for shopping");

customers [2] .addItem(t) ;

System.out.println (customers[0] .getBalance()) ;

System.out.println(customers[l] .getBalance());

System.out.println (customers[2] .getBalance());

System.out.println(customers[3] .getBalance());

}
B T T T T T R T T P PP P PP PP P PP PP B

N
 E
a
e

EA

e

s
R
N

R
L
S
R
R
 S
s
s

s

ss

R
s
 a

R
i

sR

s
t
 b
at
ba
ta
ns
s

H

H
H H

H H H H
H

2 Animal shelter

An animal rescue shelter requires a computer system to manage the animals under its care and the adoption process.

When an animal is brought to the shelter, it is given an ID, and its species, age, health status and other relevant details are

recorded in the system. When an animal is adopted, its record is updated to reflect the change in status.

Animals are identified by a unique 1D, which is a combination of letters and numbers (e.g. C4T00123). This is used to track

their information in the system.

A programmer created the classes AnimalShelter and Animal to model the situation above.

Python i

class AnimalShelter: :

def init (self, location, capacity): :

self.location = location 1

self.animals = [None for _ in range(capacity)] :

def get_location(self): :

return self.location :

def get capacity(self): :

return len(animals) :

def find animal (self, id:str): :

Method to find an animal by an ID in the list and return the index 1

class Animal: :

def _ init_ (self, id, species): :
Missing code to initialize _id, _species, _age, _is healthy :

def set_age(self, age): !

self. age = age :

def set _health status(self, is_healthy): :

self. is healthy = is healthy :

4

B3 Object-oriented programming (OOP)

def get id(self): y
return self. id :

def get species(self): :

return self. species :

def get health status(self): :

return self. is healthy :

def get_age(self): :

return self. age :

¢ Java :
public class AnimalShelter

private Animal animals[];

T

private String location;

AnimalsShelter (String location, int capacity) {

this.location = leocation;

this.animals = new Animal [capacity];

}
String getLocation() {

S
e
r
s
a
s
s
s
s
s
s
s
E
r
E
s
s
E
a
s
E
E
R
s
E
R
a

S
R
R
y

return location;

}
public int getCapacity() {

sr
se
s

sr
sa

ss

return animals.length;

}
public int findAnimal (String id) {

// Method to find an animal by ID in the array and return the index

}
public class Rnimal {

private String id;

private String species;

private int age;

private boclean isHealthy;

public Animal (String id, String species) {

// Missing code :

public void setAge (int age) {

this.age = age;

}
public void setHealthStatus(boolean isHealthy) {

this.isHealthy = isHealthy;

}
public String getId() {

return id;

}
T T T T L T T T T LT T T L LT LT LT TTTTT P r e e

 N
S
R
S

E
S
R
S

R
S
R
R

S
R
R

SRS
y

B3.2 Fundamentals of OOP for multiple classes (HL) @

= = L
O
E
-

A
I
N
O
 T
H

public String getSpecies() {

return species;

}
public boolean getHealthStatus() {

return isHealthy;

}
public int getAge() {

return age;

}
BT T T LT LT LT T T T T T T T T T T T T T TP P TP

Explain the purpose of encapsulation in object-oriented programming and how it is applied in the classes above.

Construct the missing code for the constructor of the Animal class.

Explain the use of the keyword this in the setAge method of the Animal class.

Construct code to create an instance of the Animal class with the ID “C4T00123" and species “Cat”.

Construct code to set the age of the object created above to 3 years.

Construct the method addAnimal (Animal a) that will add an Animal to the first empty position of the array

animals[] in the AnimalShelter class and return the position at which it has added the animal. If the array is full

and the animal cannot be added, the method should return —1.

HL extension

Two subclasses, Dog and Cat, are created.

=
0

Q
N

o
o

Python

class Dog(Animal) :

def _ init_ (self, id, is_vaccinated):

super (). init (id, "Dog")

self. is_vaccinated = is_vaccinated

def get vaccination status(self):

return self. is vaccinated

class Cat(Animal) :

def _ init_ (self, id, is_neutered):

super(). init (id, "Cat")

self._ is neutered = is_neutered

def get neutered status(self):

return self. is neutered

B TP R

Java

public class Dog extends Animal {

private boolean isVaccinated;

public Dog(String id, boolean isVaccinated) |{

super(id, "Dog");

this.isVaccinated = isVaccinated;

H H H H H H H H H . H H H H H H H H H H H H H H H
T

T

[2]
(3]
[2]
[2]
[2]

(5]

L

e

e
l

B3 Object-oriented programming (OOP)

public boolean getVaccinationStatus() {

return isVaccinated;

= =
|y

[}
E
-

}
public class Cat extends Animal (

private boolean isNeutered;

public Cat(String id, boolean isNeutered) {

super (id, "Cat");

this.isNeutered = isNeutered;

public boolean getNeuteredStatus () {

return isNeutered;

g Construct a UML diagram that shows the relationships between the AnimalShelter, Animal, Dog and Cat classes.

Include only the class names and relationships. 3]

The Animal class needs a method that returns a description of the animal, including its ID and species.

h Construct a method getDescription() inthe Animal class that returns a string describing the animal. 2]

The array animals[] in the AnimalShelter class is used to store instances of any kind of animal, including Dog and Cat.

i lustify why Animal is a suitable type for this array. 2]

The shelter has a program that recognizes the loyalty of volunteers by rewarding every tenth time someone donates time

to work at the shelter with a free pet-food voucher. The method to print this voucher has been implemented in the static

method Rewards.printPetFoodvoucher ().

(Note for clarity that the system is not keeping track of how many times each individual person volunteers; just the raw

count for every tenth person who shows up - so one individual may get the voucher the first time they volunteer, or

may attend for weeks without receiving a voucher!)

A getVolunteerCount () method has been added to the AnimalShelter class, which returns the current count of

volunteers.

j Describe the necessary changes to the AnimalShelter class and any other methods to integrate the volunteer reward

program into the systemn. [5]

The method removeAnimal() in the AnimalShelter class searches the array for an Animal object with a specified
ID and removes it by setting that index to null. The method returns a reference to the Animal object that has been

remaved. You may assume that an Animal with the ID exists in the array.

k Construct the removeAnimal (String ID) method. [5]

3 Streamify music service

An online music and multimedia platform, Streamify, provides users with access to millions of tracks, podcasts and videos.

To manage the vast collection, Streamify uses a computer system to keep track of the digital media, user preferences and

playlists.

Each track is identified by a unique identifier, and contains metadata including the title, artist, duration and genre. Users can

create their own playlists by adding tracks to a personalized list.

A programmer created the classes Medialibrary and Track to model this situation.

ython

lass MediaLibrary: 0

def init (self, name, capacity):

self. name = name

self. tracks = []

B3.2 Fundamentals of OOP for multiple classes (HL) 449

= -
@
=
-

class Track:

Java

private

}

}

}

}

private

private

private

private

private

D
T

L

L
l

T L
T

T
y

def get name (self):

return self. name

def get .

return len(self. tracks)

def find track(self, id):

Method to locate a track in the

Not yet implemented

size(self):

def init (self, id, title, artist, duration, genre):

self. id = id

self. title = title

self. artist = artist

self. duration = duration

self. genre = genre

Accessor methods for each attribute

public class Medialibrary {

private ArrayList<Tracks tracks;

String name;

MedialLibrary (String name) [

this.name = name;

this.tracks = new ArrayList<>();

String getName () {

return name;

public int getSize() {

return tracks.size();

public int findTrack (String id) [

// Method to locate a track in the array by its ID

// Not vyet implemented

public class Track {

String id;

String title;

String artist;

int duration; // in seconds

String genre;

list by its ID

R

—
—
—
—
—

B3 Object-oriented programming (OOP)

public Track(String id, String title, String artist, int duration, String

! genre) { :

: this.id = id;
this.title = title;

7 i
[}
=
-

this.artist = artist;

this.duration = duration; :

this.genre = genre;

}
// Accessor methods for each attribute

a Qutline why the programmer may have decided to use a list instead of an array to store the tracks within the

MediaLibrary class. 2]

b Describe the relationship between the classes Track and MediaLibrary. [3]

Discuss the importance of using the keyword this in the constructor of the Track class. [2]

d Construct code to create an instance of the Track class with the following details:

ID: TRK12345

Title: Oceans

Artist: Dive Deep

Duration: 215 seconds

— Genre: Ambient 2]

e Construct a method in the Medialibrary class that allows a user to add a Track to the library. [2]

Streamify allows users to search for media based on genre or artist.

f Construct a method searchByGenre(String genre) in the Medialibrary class that returns an array of Track

objects that match the genre. [4]

g Discuss the process of overriding methods of the Track class if it were to be extended by Podcast and Video classes. [4]

Two classes, Playlist and User, are now introduced.

[a
l

E Python i

: class Playlist: :

1 def init_ (self, name): 1

: self.name = name :

: self.track list = [] i
: # Methods to add and remove tracks from the playlist :

: class User: :

. def init (self, username): g

: self .username = username :

: self .playlists = [] :

: # Methods to create and manage playlists :

oo e e e M M R M M M M R R M M M R M M M M M R M M M R M M R R M R M R R e R M e R e e e e e -

B3.2 Fundamentals of OOP for multiple classes (HL) @

A
I
N
O
 T
H

Java

public class Playlist {

private String name;

private ArrayList<Tracks> trackList;

public Playlist (String name) {

this.name = name;

this.trackList = new ArrayList<Tracks>();

}
// Methods to add and remove tracks from the playlist

public class User { :

private String username;

private ArrayList<Playlist> playlists;

H public User(String username) {

this.username = username;

this.playlists = new ArrayList<Playlists();

}
// Methods to create and manage playlists

}
B LT T T L LT T T LT T LT T T T T PP P PP PP PP PP PP PP PP

h Construct a UML diagram that shows the relationships between the MediaLibrary, Track, Playlist and User classes.

Include only the relationships without the attributes or methods of each class. 4]

Streamify calculates the total duration of a playlist by summing the duration of each track in the playlist.

i Construct a method in the Playlist class that returns the total duration of the playlist. [2]

i Explain why the Playlist class uses a list to store tracks instead of an array. 2]

The User class can have multiple playlists, and the Playlist class contains multiple tracks.

ke Discuss why composition is used between the User and Playlist classes, and between the Playlist and Track classes. [2]

To enhance user engagement, Streamify introduces a feature that rewards users with a free month of premium

subscription for every 100 tracks they add to their playlists.

The method rewarduser has been added to the User class, which checks the total number of tracks across all

playlists and rewards the user if they meet the criteria.

| Without writing code, describe any changes required to the addTrack method in the Playlist class and the User

class to make the new reward system waork. [5]

The removeTrack method of the Playlist class allows users to remove a track from their playlist by specifying the

track’s unique ID.

m Construct the remcveTrack() method for the Playlist class. 4]

B3 Object-oriented programming (OOP)

B4 Abstract data types
(ADTs) (HL)

o z
o]

2
=

Fundamentals of abstract

data types

Interface: a contract

that specifies a set

of methods a class

must implement,

without defining how

these methods are

implemented, serving as

a blueprint that promotes

maodularity, flexibility and

abstraction in software

development. This

structure allows different

classes to implement the

same interface in diverse

ways, while ensuring they

provide the functionalities

declared by the interface.

Modularity: a design

principle that involves

dividing a system into

distinct and manageable

sections or modules,

each with its own

spedific responsibilities,

which can be developed,

tested and maintained

independently, but

function cohesively

when combined.

Which ADTs are most appropriate for different situations?

SYLLABUS CONTENT

By the end of this chapter, you should be able to:

B4.1.1 Explain the properties and purpose of abstract data types (ADTs) in programming

B4.1.2 Evaluate linked lists

B4.1.3 Construct and apply linked lists (singly, doubly and circular)

B4.1.4 Explain the structures and properties of binary search trees (BST)

B4.1.5 Construct and apply sets as an abstract data type (ADT)

B4.1.6 Explain the core principles of abstract data types (ADTs) Y
y
Y
v
V
Y
Y
Y
Y

B4.1.1 Properties and purposes
of abstract data types
Abstract data types (ADTs) are fundamental constructs in programming that provide a

theoretical framework for data manipulation through a clearly defined interface. ADTs embody

the concept of abstraction by hiding the complexity of their operations from the user. Users

interact with an ADT through a set of well-defined operations without needing to understand

the underlying implementation details. This separation of interface from implementation

allows programmers to focus on the “what” of the operations rather than the *how”, enhancing

readability and maintainability.

Furthermore, encapsulation is integral to ADTs, safeguarding the data’s integrity by restricting

direct access to the underlying data structure. The internal state of an ADT is accessed and

modified solely through its methods, preventing unauthorized or harmful modifications to the

data structure. This protective barrier ensures that the ADT operates reliably and as expected,

regardless of the external use-case scenarios.

ADTs are defined by their behaviour rather than their physical implementation, allowing them

to be applied universally across different programs and systems without modification. This

property makes ADTs highly reusable and adaptable to various applications, promoting code

reusability and reducing development time.

ADTs also exemplity the principle of modularity: the practice of decomposing complex

systems into discrete, manageable components. This modularity facilitates debugging and

testing, by isolating issues within discrete units without affecting the entire system. It also

enhances the system’s scalability and understandability, making ADTs invaluable for building

complex, robust applications.

(;Common mistake

It is easy to get confused about the difference between interface and implementation. The

interface is what operations are available, whereas the implementation is how these operations

are carried out.

B4 Abstract data types (ADTs) (HL)

4 Node: a basic unit

of a data structure,

e.g. a linked list or tree,

which contains data

and typically links to or

references other nodes.

Pointer: a variable

that stores the memory

address of another

variable, typically used

in programming to

reference, or access, the

location of data stored

in memaory.

B4.1 Fundamentals of abstract data types

(®Tok
Areas of Knowledge (AOKs) and ADTs: Guiding questions

B How does abstraction in ADTs mirror abstraction in other disciplines?

B To what extent is modularity essential for organizing and simplifying complex systems?

Abstraction and modularity are key concepts in ADTs. In groups, investigate how

abstraction and modularity are applied in their assigned AOK, such as natural sciences,

arts and mathematics. Consider:

B How is abstraction used to simplify complex ideas?

B Are there risks or benefits to simplifying reality through abstraction?

B How does modularity help organize knowledge or creativity in these fields?

Present your findings and discuss as a class.

B4.1.2 Linked lists

head—(1] (0 7 12 5 — »NuLL

M Linked list structure

A linked list consists of two main elements: nodes and pointers.

Nodes are the data element of the list. This could be a single piece of data, or it may be an

object containing multiple data. There are two particularly important nodes: the head and the

tail. The head is the first node in the linked list and the tail is the last. These help us navigate

through the linked list.

Pointers are contained within the node. These point to the next node in the list (and

sometimes the previous). A pointer may also be referred to as a reference, as it refers to the

memory address of where the next node resides.

(;Top tip!

M A trail of elephants (nodes), linked by their tails and trunks (pointers)

To visualize a linked list, you might imagine it as a chain of elephants, where each elephant

represents a node. The trunk of one elephant extends to the tail of the next, similar to how pointers

connect one node to another in a linked list.

Bl Advantages and disadvantages of linked lists

Advantages

B Dynamic data structures: Due to their implementation, linked lists are dynamic data

structures. This means that they can grow and shrink in size as we add and remove nodes.

This is unlike an array, which is a static data structure.

ks F
o
=
-

A
T
N
O
 T
H

Heap space: a region

of dynamically allocated

memory managed by

the operating system

where programs store

variables and data

structures that require

memory allocation

during runtime, allowing

for flexible memory

usage that can grow

and shrink as needed by

the application.

B Memory utilization: Linked lists can be more efficient with memory usage, as they do not

create a reserved space in memory like an array does when it is declared.

B Efficient insertion and deletion: Linked lists generally outperform arrays when inserting

or deleting data due to their dynamic nature.

Disadvantages

B Sequential access: As linked lists cannot be accessed via an index like arrays, searching

a linked list requires a linear search algorithm, where you start at the head node and

continue traversing until you find what you are looking tor. This means that using a binary

search algorithm, for example, is not possible on a linked list. For large data structures,

this restriction when searching can be very time consuming when compared to accessing

an array.

B Memory utilization: Each node requires a reference to the next (and possibly the previous)

node, as well as storing the data within it. This takes up system resources in the primary

memory. As linked lists can grow, they potentially can go beyond the system resources that

are available, causing a heap exhaustion as the system will run out of heap space.

B Types of linked lists

Singly linked lists

node
—r—

head—» A
|

| B C D
:

data pointer

»NULL

W Singly linked list

This is the simplest of the three types. Each node contains a single pointer pointing to the next

node in the list. The tail nodes contain a pointer that points to null (or none). This can be used

to recognize the end of the list when traversing it.

Doubly linked lists

next pointer

head

null «—— A | B C e — D

previous pointer

NULL

M Doubly linked list

These differ from singly linked lists because the nodes have two pointers — one reference to the

next node in the list and one to the previous. This allows for easier traversing of the list, as you

can move forward and backward with ease.

Circular linked lists

head —»

—

M Circular linked list

A B C

B4 Abstract data types (ADTs) (HL)

These are similar to singly linked lists, but with one major difference: the tail node, instead of

pointing to null, points back to the head node. This allows for circular, continuous traversal of I =

the list. Doubly linked lists can also be implemented in this manner. g
=
=<

1 Sketch out a singly linked list containing the numbers 1 to 5.

2 Sketch out a doubly linked list containing the names of five of your classmates.

3 Sketch out a circular linked list containing the names of five of your idols.

(;Common mistake

Do not forget to label the head and to paint the tail node to null (or to the head node in a circular

linked list).

(;Top tip!

Remember to clearly show the node, as illustrated above. It should be represented as a box, divided

into either two or three sections. The pointers should be arrows clearly indicating the node they are

referring to.

B4.1.3 Linked lists

B Linked list operations
These steps all refer to the operations based on a singly linked list.

Traversal / search
This is essentially a linear traversal / search, where you start at the beginning of the linked list

and move along the list, following the pointers to the nodes.

1 Start with the head pointer to find the first node in the linked list.

2 From this node, follow the pointer within the node to the next node.

3 Repeat step 2 until you find the node you are searching for or until the pointer points to

null / none, which means you have reached the end of the list.

Insertion

There are three methods for inserting into a linked list. Which one you use depends on where

you need to insert the node.

Inserting at the beginning:

Z ———NULL

head —» A > B — 1 »nNULL

1 Create a new node.

B4.1 Fundamentals of abstract data types @

A
T
N
O
 T
H

head A ——> NULL

2 Point the new node to the current head node.

Z N

i A —>NULL

3 Update the head pointer of the linked list to the new node.

Inserting at the end:

— NULL

head —>| A

1 Create a new node.

head —|

—1—> NULL

—
n

I 7 nuLL

2 Find the last node by traversing the list until you find the tail node that points to null.

3 Point the current tail node to the new node (the new node pointer has not been set, so it

will point to null).

Inserting in the middle:

1=

head —»|

—>NULL

A

1 Create a new node.

C NULL

N
 —
|

2 Traverse the list to find the node after which you want to insert the new node.

B4 Abstract data types (ADTs) (HL)

\

head ——> f\ B C NULL

25 =
o
Z
=<

3 Set the new node’s pointer to point to the newly found node’s pointer (at this point, both

nodes will be pointing to the next node in the list).

Z [5]

vl
head ——> A\ B 7 C ——>NULL

4 Set the newly found node’s pointer to the new node.

(;Common mistake

Be careful not to complete action 4 before action 3 when inserting into the middle of the linked

list. If you do this, you will lose any pointers to the second part of the list, and every node beyond

the point of the insertion will be lost.

Deletion
There are also three methods for deleting trom a linked list. Which one you use depends on

where you need to delete the node.

Deleting the first node:

head— 5 A B ———————>NULL

1 Check whether the list is empty. (If the head pointer is already null, the list is emprty.)

head A > B —————NuULL

Tee, 2ZMemeR 0 .o

2 Set the head pointer to the new first node’s pointer. (Now nothing is pointing to the

original first node, which eliminates it from the list. Most high-level languages have

garbage collection to realize this and clear it up without you having to delete it.)

Deleting a middle node:

P
—

head —| A B C NULL

1 a Traverse the list, starting from the head, to find the node you want to delete.

B4.1 Fundamentals of abstract data types @

A
T
N
O
 T
H
 b While doing this, you will need to manually keep a pointer / reference to the previously

visited node.

head ——> A B C NULL

2 If you find the node you want to delete, use the previously visited node’s pointer and adjust

it to point to the found node’s pointer. (Now nothing is pointing to the found node, which

climinates it from the list.)

Deleting the end node:

l
e
—
a

head——»| A B NULL

!
1 a This process is similar to the deletion from a middle node. Traverse the list, starting

from the head, until you find the tail node pointing to null.

b While doing this, you will need to manually keep a pointer / reference to the previously

visited node.

head——» A = B NULL

\Nuu

2 Adjust the previously visited node’s pointer to point to null (or none).

Draw a singly linked list with the following names: Aarav, Yuki, Sofia, Jamal and Elena.

With the aid of diagrams:

1 Show the steps to insert Nia after Sofia.

2 Show the steps to delete Elena.

3 Show the steps to add Liam at the head.

B Construct linked lists

Initial set-up and traversal

Each linked list has a class that is the starting point when creating a linked list. This often just

includes a single instance variable: the pointer to the first node (the head).

We will also create a method that traverses the list to ourpur the contents. Take note of how

the loop works. We initially get access to the first node through the head pointer, and then we

traverse through the nodes until we come to the tail node that points to null or none.

B4 Abstract data types (ADTs) (HL)

Python

class LinkedList:

ks T
o
=
-~ "mn Constructor """

def init (self):

self.head = None # Initialize the head pointer

"niFunction te print the linked lisg"""

def print list(self):

current = self . head # Set to first node

while current != None: # Loop until no further nodes

print (current .data, end=" -> ") # Output node data

current = current.next # Move pointer to next node

print ("None")

Java

public class LinkedList {

ListNode head; // Head of the list

// Method to print the LinkedList

public void printList() ({

ListNode n = head; // Set to first node

while (n != null) { // Loop until no further nodes

System.out.print(n.data + " -> "); // Output node

// data

n = n.next; // Move pointer to next node

}
System.out .println ("NULL") ;

}

T

T
T
 T

T
P

T

P T
P

P
P

P
P

—
—

We then create a node class that contains data and at least one pointer. If we were creating

a doubly linked list, we would have a second variable (self .previous for Python, or

ListNode previous in Java).

Python

class ListNode:

" Constructor (1 parameter data with a default value of 0) """

def init (self, data=0):

self.data data

self .next = None

B4.1 Fundamentals of abstract data types @

A
I
N
O
 T
H

H H H
H H H
Java

class ListNode {

int data; // This example will create a node with data of type int, but you

// may use any type here depending on your needs

ListNode next;

// Constructor to create a new node

ListNode (int d) {

data d;

next = null; // Set to null

—
—

Insertion

The insertion method should be created inside the LinkedList class. This should have a

parameter to receive the data passed to it. From there, it should create a new node with that

data and insert it into the correct position in the list. Remember that there are three different

insertion methods: at the beginning, in the middle or at the end.

The insert_after wvalue method assumes we want to insert after a found value. This

could be implemented in different ways. It could be inserted in a certain position or after a

node that has already been identified and passed as a parameter.

e i e e e i et e sl iy |

1 1
| Python |

: def insert_at beginning(self, data): :

1 new node = ListNode(data) # Create the new ncde with the data given 1

: new_node.next = self.head # Set new node pointer tc current head node :

: self.head = new _node # Set head peointer tc new node :
| W 1
1 1
: Inserts a new node with 'data' after the first node found with 'target

1 value'. 1

: If 'target value' is not found, does not insert the new node. :

: def insert after value(self, target value, data): :

: current = self.head :

: while current is nct None: :

: if current.data == target value: # If we find the node to insert after :

1 new_node = ListNode(data) # Create a new node with provided data

: new node.next = current.next # Set new node pointer to the same :

: # pointer as the found node :

: current .next = new node # Set the found node pointer to the new :

1 # node 1

: return # We can now end the method early :

: current = current.next # Otherwise move to the next node :

: print (E"Node with data {target value} not found.") # If loop ends we did :

: # not find our target :

B o o o R O RN R R RN RN MR N RN R N N M M RN N RN N M RN M RN M N N M N RN M NN NN M NN NN NN MM M NN M RN W M M M e mm wm em mm wm mw oww owm o

B4 Abstract data types (ADTs) (HL)

def insert at end(self, data):

new_node = ListNode (data) # Create new node

if self.head is None: # Check if list is empty

= = L
o
E
-

self.head = new node # Insert new node as head of list

else:

current = self._head # CGet a link to the first node in the list

while current.next != None: # Keep moving down the list

current = current.next

When the above loop ends, the next pointer must be None, indicating we

have reached the last node

current.next = new node # Set peointer on current last node to the new node

B T T T T T T T T T

Java

public void insertAtBeginning(int data) {

ListNode newNode = new ListNode (data); // Create a new node with the data given

newNode.next = head; // Set new node pointer to current head node

head = newNode; // Set head pointer to new node

}
public void insertAfter(int targetValue, int data) {

ListNode current = head;

// Traverse the list to find the target value

while (current != null && current.data != targetValue) {

current = current.next;

}
// At this point current will either be null (not found) or our target node

// 1f the target node is found, insert the new node after it

if (current != null) {

ListNode newNode = new ListNode (data); // Create new node with data

// provided

newNode .next = current.next; // Set new node pointer to the same pointer

// as the found node

current .next = newNode; // Set the found node pointer to the new node

} else {

// If the target value is not found in the list

System.out.println("Node with value " + targetValue + " not found.");

}
public void insertAtEnd(int data) {

ListNode newNode = new ListNode(data); // Create a new node

if (head == null) { // Check if list is empty

head = newNode; // Insert new node as head of list

} else {

ListNode last = head; // Cet link to the first node in the list

while (last.next != null) { // Keep moving down the list

last = last.next;

B4.1 Fundamentals of abstract data types @

A
I
N
O
 T
H

)

// When the above loop ends, the next pointer must be null, indicating

// we have reached the last node

last.next = newNode; // Set pointer on current last node to the new node

: H
T L T LT T L LT T T T T T T T T L LT T TP PP PP PP

Deletion
Like the insertion methods, the deletion method will also reside in the LinkedList class. We

assume here that all items in our list are unique. If this were not the case, these methods

would delete the first occurrence. Our method has one parameter: the data we are looking for.

Our delete method must be prepared for three possible outcomes:

1 We are deleting the head node

2 We are deleting a middle node or the tail node

3 The node may not be found.

def delete node(self, data):

current = self _head # Get the head node

prev = None

Case 1: If the node to be deleted is the head of the list

if current != None and current.data == data:

self _head = current.next # Change head to the current head's pointer

current = None # Free the old head

return

Search for the node to be deleted, remembering to keep track of the

while current != None and current.data != data:

prev = current

current = current.next

Case 3: If the node is not found

if current == None:

print (f'"Node with data {data} not found.")

return

Case 2: Unlink the node from the list

prev.next = current.next

current = None

|
1
]
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

: # previous node

1
1
1
]
1
1
1
1
1
1
]
]
1
1
1
|
1
1
1

B4 Abstract data types (ADTs) (HL)

Java

public void deleteNode (int data) {

ListNode current = head

prev = null;

// Case 1: If the head node is to be deleted

if (current != null && current.data == data) {

head = current.next; // Changed head

return;

}
// Case 2: If the node to be deleted is somewhere other than at the head

while (current != null && current.data != key) {

prev = current;

current = current.next;

}
// Case 3: If the key is not present in the list

if (current == null) {

System.out.println("Node with value " + key + " not found.");

return;

}
// Unlink the node from the linked list

prev.next = current.next;

}
T T T T T LT T T T T T T T T T T T TS

Search
The search method also resides in the LinkedList class. This is a relatively straightforward

method that combines some of the techniques we have already used. The method needs a

single parameter to look for and, in these examples, will return true or false, depending on

whether the item was found. This could be modified to return the position in the list of the

node itself, if needed.

Python

def search(self, key):

current = self.head # Cet the head node

while current != None: # Keep looping until we have run out of nodes

if current.data == key: # If we find the node we are looking for

return True

current = current.next # Move to the next node

1
1
[
1
1
1
1
1
1
1
1
1
1
1

return False # Value not found in the list 1
1
-

B4.1 Fundamentals of abstract data types @

= = -
o
=
-

A
I
N
O
 T
H

H H :
H H H H H
H H H H H
H H H H H
H H H H

Java

return true;

}
current

}
return false;

public boolean search(int key) {

ListNode current = head; // Get the head node

while (current != null) { // Keep looping until we have run out of nodes

if (current.data == key) { // 1f we find the node we are looking for

current.next; // Move to the next node

// Value not found in the list

Create the LinkedList class and ListNode class. Using a test table, plan out the actions you will

take to ensure that these list methods are working correctly. When you have done that, carry out

the tests.

4 Root: the topmost

node from which all

other nodes descend,

serving as the starting

point for any traversal

or operation within a

binary search tree.

4 Parent: a node that

has one or more nodes

directly beneath it,

connected by edges,

and it directly controls

these subsequent

child nodes.

4 Child: any node that

has a direct link from a

parent node positioned

above it, potentially

having further child

nodes of its own.

B4.1.4 Structures and properties
of binary search trees

B How binary search trees are used for data organization
A tree structure in Computer Science is used to hold data in order and is usually drawn upside

down, with the root at the top and the leaves at the bottom.

left subtree right subtree

children

leaf nodes

M Tree structure and its parts

In this section, we will be focusing on a tree that follows some strict rules, which allow us to

optimize search, insertion and deletion operations.

However, before we discuss the rules of binary search trees (BST), it is important to

understand the terminology. The node at the top of the tree is known as the root node. If a

node has a node attached below it, it is known as a parent node, with the one below being the

child node. Each parent node can have one or two child nodes. The child node that is less than

the parent goes on the left; the child node that is greater than the parent, on the right.

B4 Abstract data types (ADTs) (HL)

Subtree: any

node, along with

its descendants,

functioning as a

standalone binary search

tree, with its node

acting as the root.

Leaf: a node that

does not have any

children, representing

the endpoints of

a binary search

tree’s branches.

B4.1 Fundamentals of abstract data types

The sub-section to the right of a node is known as the right subtree and to the left, the left

subtree. All nodes at the bottom of the tree, without children, are known as leaves.

‘We can assume that all items within the BST are unique (there are no duplicates).

GCommon mistake

Make sure you move in the correct direction when navigating through the tree:

m Move left if the item is smaller than the node.

m Move right if the item is larger than the node.

B Tree structure and node insertion

®® @
ere, you can see these two rules in place. In this example, 10 was the first node entered into

the BST and set as the root. Each new node works its way through the tree until it finds a space

where it can join. We cannot be completely sure what was entered next, but let us assume that

it was node 5:

B Node 5: This would be compared to node 10; as it is smaller than node 10, it would join to

the left of that node. This is now a child of node 10, which is the parent node of node 5. At

this point, node 5 is also a leaf, but this will change as more nodes are added later.

® Node 12: This would be compared with 10 and, as it is greater, it would join to the right.

This is now a child of node 10, which is the parent node of nodes 5 and 12.

B Node 3: This would be compared to node 10; as it is smaller, it would move to the left. It

would then be compared with node 5 and, as it is smaller, it would be moved to the left

again, where it would join the tree. This is now a child of node 5, and node 5 is the parent

of node 3.

B Node 8: This is smaller than node 10, so it moves to the left; it is greater than node 5, so it

moves to the right. This is now a child of node 5, and node 5 is the parent of nodes 3 and 8.

= = -
o
Z
-

A
I
N
O
 T
H

(‘Common

mistake

Leaves are not always

at the bottom of

the tree. A leaf is

any node in the tree

that does not have

any children.

468

1 Write the statements for how nodes 6, 9, 16 and 15 join the tree.

2 Sketch the resulting binary tree when the following items are entered:

10,15, 3,12,7,1,22,18,5

3 Which nodes are:

parents?

children?

leaves?

right subtree?

left subtree?

=

o

Q
o

N

o
W

root?

B Node search
To find a node in a BST, we follow these steps, looking for the key we are searching for:

1 Start at the root node: Begin your search from the root of the BST.

2 Check for null / none: If the current node is null (or none in Python), the search concludes

without finding the key. The key is not present in the BST.

3 Compare the node value with the key:

a If the current node’s value matches the key, the search is successtul. The key is found in

the BST.

b If the key is smaller than the current node’s value, proceed to the left child of the

current node.

¢ If the key is larger than the current node’s value, move to the right child of the

current node.

4 Repeat the process: Continue the process from step 2 with the new current node.

M Node traversal
Depending on the requirements, there are different ways to traverse the BST and return the

data within. These are:

B in-order traversal

B pre-order traversal

B post-order traversal.

To perform these operations, it is important to remember the order of actions as you move

through the BST. The easiest way to do this is to remember that you always move left before

right. After that, you just need to remember when you output the node data.

(;Top tip!

The traversal name gives you a clue to where the node check is:

B Pre-order: check before left and right (NLR)

B Post-order: check after left and right (LRN)

B In-order: goes in the middle (LNR).

Let us look again at the BST illustrated above.

B4 Abstract data types (ADTs) (HL)

In-order traversal (left, node, right)

We start at the root (10) and need to perform all three operations on this node. We start with

the first, left. This takes us to node 5 with the same situation, left and we move to node 3.

ze =
o
=
- Here, we move left (no further node), node so we output 3, and then move right (no further

node). We have now completed all three actions on this node. So, we move back to node 5.

Here we have already gone left, so now we output node, which would be 5, and then we move

right. We continue with these operations until all three have been completed on every node.

The final output would be:

3,5,6,8,9,10,12,15, 16

You will notice the numbers are output in order. This is the main purpose of an in-order

traversal — to output the nodes, sorted, in ascending order.

Pre-order traversal (node, left, right)

We carry out the same operations here, but in a different order. We start again at the root (10),

but this time we output node value first. We then move left to node 5, where we output the

node value there. We move left again and output node 3. We move left and right on node 3,

completing the operations, and then move back to node 5, where we move right to node 8. We

then continue in this manner until all three operations have been completed on every node.

The final output would be:

10,5,3,8,6,9,12, 16, 15

This method is useful for creating a copy of the tree or for exploring paths, as it visits the

parent prior to the children.

Post-order traversal (left, right, node)

Once you have understood the first two methods, this third should not cause any problems. It

follows the same idea again, but this time we visit the node last. We start at the root (10), and

we go left to node 5. We then go left again to node 3, where we complete all three operations,

left, right and then finally node, where 3 is output. We then go back to node 5 and move right

to node 8, where we go left to node 6 and complete all three actions, with 6 being output. We

then move back to node 8 and move right to node 9. We then continue in this manner until all

three operations have been completed on every node.

The final output would be:

3,6,9,8,5,15,16,12, 10

This method is often used for deleting nodes within the tree as it visits children before their

respective parent nodes.

1 On the BST you drew for the previous review questions, carry out the following and show

the output:

a In-order traversal

b Pre-order traversal

¢ Post-order traversal

2 What would happen if non-numerical data were input into a BST? Sketch the following

BST when the data is input in this order:

Ava, Alex, Bella, Catherine, Carlos, Brian, Aaron, Chloe

B4.1 Fundamentals of abstract data types @

A
T
N
O
 T
H

Thinking skills:

Problem-solving

and analysis

Coding competitions

are an effective

way to improve

your programming

and problem-

solving skills. Here

is a question from

CodingQuest where

a BST can be used

to solve it:

https://codingquest.io/

problem/26

B Node deletion
To delete a node in a BST, we take the following steps, looking for the key to delete and then

carrying out the action based on the situation we find ourselves in:

1 Start at the root node: Begin the deletion process from the root of the BST.

2 Search for the key: Follow the algorithm from the node search.

3 Once the node is found, determine its type:

a Leaf node (no children): if the node has no left or right child

b One child: if the node has exactly one child (either left or right)

¢ Two children: if the node has both a left and a right child.

4 Delete the node based on its type:

a Leaf node: Simply remove the node from the tree by setting its parent’s appropriate (left

or right) child pointer to null.

b One child: Bypass the node by linking its parent directly to its child. If the node is a left

child, update the parent’s left pointer; if a right child, update the parent’s right pointer.

set pointer

M Deletion of node with one child

¢ Two children:

i Find the in-order successor (smallest value in the right subtree) or the in-order

predecessor (largest value in the left subtree).

il Replace the value of the node to be deleted with the in-order successor’s (or

predecessor’s) value.

iii Delete the in-order successor (or predecessor) by repeating step 4, which now

becomes a case of deleting a node with at most one child.

M Deletion of node with two children

5 Repeat the process as needed:

If you had to delete the in-order successor or predecessor (step 4¢), repeat the deletion

process for that node.

B4 Abstract data types (ADTs) (HL)

Unordered set: a

collection of unique

elements where the

elements do not have

a specific order or

sequence and their

arrangement can vary

each time they are

accessed.

Mutable: a set whose

state or content can

be changed after it has

been created, allowing

for modifications, e.g.

adding, removing or

altering elements within

the object.

B4.1.5 Sets as an abstract data type
Like lists and arrays, sets can be used to store multiple values in a single variable. Sets are

unordered, meaning that they cannot be accessed via index or key, but they are mutable,

allowing the addition and removal of items. However, the individual items cannot be updated

or change values. Sets contain only unique elements.

They are a powerful data structure when unique elements and etficient operations are crucial.

They are extremely useful when you want to ensure a collection consists of only unique

elements, such as when working with usernames where duplicates are not allowed. They are

also extremely fast when needing to check whether an item is already part of a collection.

‘When needing to perform mathematical set operations, such as union, intersection and

difference, which are commonly used with database queries, search algorithms and data

analysis, sets perform very well.

Key characteristics of sets are that:

B they are unordered

H they are mutable

B they contain unchangeable values

| they contain only unique elements.

M Creating sets
There are two ways of creating a set in Python:

Python

Using curly brackets

my set = {1, 2, 3, 4, 5}

Using the set () constructor

my set2 = set([1, 2, 2, 3, 4, 5]} # Duplicate entries will

1
1
1
1
1
1
1
1
1
1

automatically be removed :

-

In Java, there are a number of classes that implement the Set interface. For our example

purposes, we will use the HashSet. The other possibilities are LinkedHashSet and

TreeSet, which will not be covered here. Using HashSet requires the import of two libraries:

Java

import java.util._HashSet;

import java.util.Set;

// Creating a HashSet of type Integer

Set<Integer> mySet = new HashSet<>();

e
m
r
e
s
s
s
a
s
a
t
s
a
s
s
t
a
r
s
n
n
r
r
r
n
n
n
y

B4.1 Fundamentals of abstract data types @

I z
o
=
=<

A
T
N
O
 T
H

Set union: the

union of twao sets is

a new set containing

all the elements that

are in either of the

original sets, effectively

combining them without

any duplicate elements.

Set intersection: the

intersection of two sets

Is a new set containing

only the elements

that are present in

both of the original

sets, identifying their

common elements.

Set difference: the

difference between

two sets is a new set

containing elements

that are in the first

set but not in the

second set, effectively

subtracting the elements

of the second set from

the first.

B Set methods
To add and remove elements:

my_set.add(e6) # Add 6 to the set

r

t
1
T
: my set = {1, 2, 3, 4, 5}

1
r
I my set.remove(l) # Remove 1 from the set : _

T

Java

Set<Integer> mySet = new HashSet<>();

! my set.add(6); // Add 6 to the set

my set.remove(l) // Remove 1 from the set
H BT R T T T T T L LT T T T LT L L L LT E T T TP P TP P PP

To check whether elements are present in the set:

Python

if 2 in my set:

print ("2 is in the set")

else:

print ("2 is not in the set")

e e e e b e e e e e e b e e e E e e e e A e A E e A e e e A e e e e e ee e eeeeeeaaeaasasaRaa e s s ansaaanns

Java

if (my set.contains(2)) {

System.cut.println("2 is in the set.");

} else {

System.out.println("2 is not in the set.");

}

H H H H
H H H H H
H H H H H
H H H H H
H H H H

: T T T T LT T T T T T T P TP PP

B Set operations
There are three main operations that are used to manipulate and compare sets. These are

union, intersection and difference. We will show their differences using the set created below.

1 [
' Python ¢ Java i

: # Define two sets : i // Define two sets

: A= {1, 2, 3, 4} : Set<Integer> A = new HashSete<x();

1 B = {3, 4, 5, 6} 11 oA.add(1);]
SNPEp———— G WPY-".Up 1W

i A.add(3);
i A.add(4);
! Set<Integer> B = new HashSete<>({); !

i B.add(3);
i B.add(4);
i B.add(5);
i B.add(s);

B4 Abstract data types (ADTs) (HL)

Union
A union joins two sets to create one that contains all the elements from both, without

any duplicates.

ze =
o
=
-

Python

Union

union set = A | B # or A.union(B)

print ("Union:", union set)

Output

L3

I
1
i
1
'
'
I
1
'
1
'
+ # Union: {1, 2, 3, 4, 5, 6}
1
L3

B T T T LR T T L E T T T P T T

Java

// Union

Set<Integers> unionSet = new HashSet<>(A); // Creates a new

// set containing all elements from A

unionSet.addall (B); // Performs a union join with B

System.out .println("Union: " + unionSet); // Output set contents

// Output

// Union: [1, 2, 3, 4, 5, 6]

. . H H

H H H H H H H H

H H
H H H H
H H H H H H H H

H H
H H H H

Intersection

An intersection of two sets creates a new set that contains only the elements that are present

in both.

P el e e e e e e e e e k. |

Python

Intersection

intersection set = A & B # or A.intersection(B)

print ("Intersection:", intersection_set)

Output

Intersection: [3, 4]

Java

// Intersection

Set«<Integer> intersectionSet = new HashSet«s>(A);

intersectionSet.retainAll (B);

System.out .println("Intersection: " + intersectionSet);

// Output

// Intersection: [3, 4]

B4.1 Fundamentals of abstract data types @

A
T
N
O
 T
H
 Difference

The difference between two sets is a set containing elements that are in the first set but not in

the second.

Python

Difference

difference set = A - B # or A.difference(B)

Output

L
i
1
i
1
i
1
: print ("Difference:", difference_ set)

i
1
I # Difference: [1, 2]
1
L

Java

// Difference

Set<Integers> differenceSet = new HashSet<s>(A);

differenceSet.removeAll (B) ;

System.out.println("Difference: " + differenceSet);

// Output

// Difference: [1, 2]

T T T T T T T T T T LT T T T T

Set A: {4, 8, 15, 16, 23}

Set B: {42, 8, 16, 60, 7}

1 Show the output if a union operation is performed.

2 Show the output if an intersection operation is performed.

3 Show the output if a difference operation is performed.

Social Skills: Collaborative group work

Social-media friend recommendation

With a partner, working in your chosen language, create two sets consisting of the

following names:

A: Carlos Gomez, Yuna Kim, Dmitri Ivanov

B: Yuna Kim, Dmitri Ivanov, Leila Al-Farsi, Sean O’'Brien

A and B represent two users on a social-media network. A and B are friends with

each other.

1 Using set operations, identify the users’ common friends.

2 Using set operations, identify friends of B that are not friends with A, so the platform

can recommend new connections.

B4 Abstract data types (ADTs) (HL)

Bl Check whether subset or superset
A subset or superset describes the relationship between two sets. # Set subset: a set

where all elements Set A is considered a subset of B if all of A's elements are present in B — which would be
of this set are also

elements of another set,

indicating that the first

set is entirely contained

within the second set.

I z
o
=
=<

considered the superset. All elements of the subset can be found in the superset.

To check whether set A is a subset of set B, or whether B is a superset of A:

Python
1
1
1

Define two new sets :

A= {1, 4, 7} 1

B=1{1, 2, 3, 4, 5, 5, 7} -
Check if A is a subset of B :

Both of these methods are acceptable :

print (A.issubset (B)) # True :

print (A <= B) # True 1

Check if B is a superset of A :

Both of these methods are acceptable :

print (B.issuperset (A)) # True :

print (B »= A) # True :

- e

e

|

: Java
// Define two new sets i

Set<Integer> A = new HashSet<>();

A.add (1) ;

A.add(4);

A.add(7);

Set<Integer> B

.add (1) ;

.add (2) ;

.add (3) ;

.add (4) ;

.add (5) ;

.add (6) ;

.add (7) ;

// Check if A is a subset of B

System.out.println(B.containsAll (a)); // True

// Check if B is a superset of A by checking if A is contained within B, but B

: // is not contained within A

E System.out.println(B.containsAll (A) && !A.containsAll(B)); // False

new HashSet<> () ;

b
W

W

w

w
w

H H
T L L LT T LT T T LT TP T PR PP PP PP P

B4.1.6 Core principles of abstract data types

B Hash tables
Hash tables are a particularly important data structure in Computer Science. They offer rapid

retrieval and insertion capabilities into an array-like structure. However, rather than an

abstract integer being used by the programmer for the index, a key can be provided instead.

B4.1 Fundamentals of abstract data types @

A
T
N
O
 T
H
 # Hashing algorithm: This key is then processed through a hashing algorithm to find which array index to store

a function that converts the data in. This allows the data to be stored in an array-like structure that provides an O(1)

input data of any size average-time complexity for search, insert and delete operations under ideal conditions.

into a fixed-size string

of characters, which

typically represents the

data in a compressed

For example, “name” could be used as the key by the developer. A hashing algorithm then

processes this with the aim of producing an integer so that where the data this key is linked to

can be stored in the array. One example method where this could be achieved is by adding up

and seemingly the ASCII values of all the letters and then using modulus and the size of the table to determine

random format and the index.
is used primarily for

indexing and retrieving # Hash table size
items in databases

- table size = 10
more efficiently. -

ASCII values for letters
+0(1) time

complexity: describes 'n' = 110

an algorithm that takes 2l = 97

the same amount
i 'm' = 109

of time to execute

regardless of the size of ‘et = 101

the input data set. 110 + 97 + 109 + 101 = 417

ASCIl (American 417 % table size = 7
Standard Code

for Information
Interchange): a This data would then be stored at index 7.

character-encoding Hash tables: Creating, inserting and retrieving data
standard used to

. This is how we can create a hash table, as well as insert, delete and retrieve items:
represent text in

computers and other R R R S s S H

devices, defining a 1 Python 1
1 1

numerical value for each I # Creating a hash table as a Python dictionary !
symbol and character 1 1

. 1 hash_table = {} 1
commonly used in the 1 -)) 1
English language. y # Inserting two items 1

: hash table["keyl"] = "valuel" :

: hash table["key2"] = "value2" :

I # Retrieving and printing cne item 1

: value = hash table["keyl"] :

: print ("The value for 'keyl' is:", wvalue) :

: # Deleting an item :

I del hash table["key2"] 1
1 - 1

P L T T T T T T T T T T T LT T T R T TP T

Java

; import java.util.HashMap; i

! public class Main { 3

i public static void main(String[] args) |{ i

; // Creating a hash table using HashMap i

; // The first data type is for the key, the second is for the data ;

; HashMap<String, String> hashTable = new HashMap<>(); ;

? // Inserting two items ;

] hashTable.put ("keyl", "valuel"); i

i hashTable.put ("key2", "value2"); §

BT T T LT T T T T LT T T T T T T T T LTI TTETTr TN

B4 Abstract data types (ADTs) (HL)

// Retrieving and printing one item

String value = hashTable.get ("keyl");

System.out.println ("The value for 'keyl' is: " + value);

// Deleting an item by key

String removedValue = hashTable.remove ("key2");

// associated with the key

Rehashing: a process

in hash tables where the

data is redistributed into

a new, larger array to

reduce the load factor

and minimize collisions,

maintaining efficient

performance.

(;Common

mistake

Do not overlook the

impact of a high load

factor on hash-table

performance. Keeping

the load factor low is

incredibly important

for efficiency.

Collision factors
As you may have already guessed, the hashing algorithm demonstrated above is not foolproof.

There could be other example keys that also generate the number 7 for the index — when this

happens it is called a “collision”. Ideally, our hashing algorithm should generate a unique index

for each key and, while there are some more complex algorithms than the one we looked at

that are better at doing this, there is no complete solution available. We cannot store two data

items in an array at the same index, so how do we get around this problem? There are two

main methods used: “chaining” and “open addressing”. Before we look at these methods, it is

important to understand the impact of the number of items we are trying to store in the hash

table. This is called the “load factor™.

Load factors

The load factor is a measure that indicates how full the hash table is. The load factor is defined

as the ratio of the number of elements currently stored in the table to the total number of slots

available. The formula for load factor is:

number of entries in the table
Load factor =

total number of slots

The load factor can heavily affect the performance of the hash table. A hash table with a

high load factor will have more collisions, which will impact performance when performing

operations on the table.

Rehashing

‘When the load factor exceeds a certain threshold, rehashing is necessary to maintain efficient

performance. Rehashing involves creating a new, larger array and redistributing the existing

elements using a new hash tunction or the same hash function applied to the new array size.

This process reduces the load factor and minimizes collisions, ensuring that the hash table

operations remain efficient.

Steps involved in rehashing:

1 Monitor the load factor of the hash table and, when this exceeds 0.7 (70 per cent),

trigger rehashing.

2 Prepare a new array that is at least double the size of the current array. Ideally, the new size

should be a prime number to help reduce collisions.

3 For each element already in the hash table, all new hash values need to be computed based

on the new array size.

4 Insert the elements into the new, larger array, ensuring that any collisions are

handled appropriately.

B4.1 Fundamentals of abstract data types @

// Returns the value

= =
o
Z
=<

A
T
N
O
 T
H

Hash table chaining:

a collision-resolution

technigue in hash tables

where each bucket or

index in the array can

store multiple elements

in the form of a linked

list, allowing more than

one entry to be stored

at the same index.

High load factors

(hash tables): a

condition where a

sizeable portion of

the hash table's slots

are filled, leading to

increased collisions and

potentially degraded

performance, due

to more frequent

need for collision

resolution mechanisms.

4 Open addressing:

a collision resolution

method in hash tables

where, instead of using

structures like linked lists

to store multiple items

at the same index, any

colliding item is placed

into the next available

open slot in the hash

table itself, according to

a probing sequence.

Chaining

Chaining utilizes linked lists (or a similar structure) to be able to store more than one item of

data at a single index. When a collision occurs, and two keys hash to the same index, the new

key-value pair is added to the end of the list at that index.

Let us consider a simple hash function as “key mod 6” and a sequence of keys as 35, 800, 82,

92,122 and 94.

M Empty table M Insert 35 M Insert 800 and 82

0 0 0

1 1 1

2 2 2 800

3 3 3

4 4 4 82

5 5 35 5 35

M Insert 122: Collision, so it is added to a chain M Insert 94: Collision, so it is added to a chain

0 0

1 1

2 800 92 122 2 800 92 122

3 3

4 82 4 82 94

5 35 5 35

Advantages:

B Simplicity: It is relatively easy to implement.

B Handles high load factors well: If the number of items you are inserting is greater than the

amount of spaces in the table, it will still operate efficiently. However, lookup times may

become slower when having to access a linked list.

B Good for unknown data sizes (connected to the point above): If you do not know in

advance how many items you will be inserting into the table, chaining will have an

advantage as you will not need to rehash the table to resize it.

Disadvantages:

B Memory overhead: As it is urilizing a linked list, the more items there are in the chain, the

more memory it will require.

® Complexity for deletion: If the deletion is within a linked list, performance will degrade

due to the need to adjust pointers.

B Variable performance: When accessing an index with a linked list, this will perform worse

than one without, which can impact search and delete actions.

Open addressing

Open addressing only stores data within the hash rable itself. When a collision occurs, it will

find another empty slot in the hash table, according to a predefined sequence, and store the

data there.

Several methods can be used to achieve this:

B Linear probing sequentially checks the next spot until a space is found. However, this can

lead to clustering, where a group of adjacent slots get filled, increasing the search time for

these elements in particular.

B4 Abstract data types (ADTs) (HL)

B Quadratic probing searches in a more spaced-out manner for an available slot using the

original hash value and a quadratic function. If the next space is also full, it increments the

value of the quadratic function and searches again until it finds an available slot.

B Double hashing uses a second hash function to determine the probe step. The first hash

function is performed first, and then a second one to give an offset from the original index.

This offers better distribution and minimizes clustering compared to linear and quadratic

probing, but requires more computational overhead.

Advantages:

B Space efficient: Stores all elements directly within the hash table array, eliminating the

need for extra data structures, such as linked lists.

More memory efficient: No pointers are required.

Simpler to serialize: As it is a simpler data structure with contiguous memory allocation,

converting the structure to a format to be stored or transmitted is simpler than a hash table

using chaining.

Disadvantages:

B Increased computational overhead: If there are high load factors, performance may

decrease due to the probing methods required.

B Clustering: This can be an issue especially when using linear probing, where consecutive

slots are filled, which increases the average time for insertions, deletions and searches that

do not find the element they are searching for.

B Complex deletion: Deleting an element is a complex process as you may break

probe sequences.

Using a hash table, create a simple voting system. The system should have the ability to add

and remove candidates. Use the name input by the user as the key in the hash table. Once the

candidates have been input, it should allow voters to cast votes for the candidates in the system

and allow the current totals to be viewed. There should be an option to end the election when

the voting is over, and the winner should be output to the user.

Working in a team, conduct a small experiment by implementing two different ADTs to solve the

same problem and compare the performance. You could consider execution time and memory

usage, for example.

Collaborate on this project by assigning roles, managing your time and co-operating to achieve

your goal. You could create a shared code repository to help you work together.

When you have finished, prepare a presentation summarizing your project. Include the problem

definition, implementation details, test results, analysis and conclusions.

An example project:

Spell checker

Implement a spell checker using a hash table and a binary search tree. Compare the performance

for the following operations:

B Inserting words into the dictionary.

B Checking whether a word is in the dictionary.

B Suggesting corrections for a misspelled word (finding the nearest match).

B4.1 Fundamentals of abstract data types @

ze =
o
=
-

A
I
N
O
 T
H

s
s
s
s
s
s
s
s
s
s
n
s
s
n
n
s
a
s

@ Linking questions
1 What role do stacks and queues play in handling CPU interrupts and polling? (A1)

2 (Can abstract data types be used to manage data? (A2)

3 How can abstract data types be used to optimize the file-processing operations like read

and write? (B2)

4 (Can a binary search tree play a role in the quicksort algorithm? (B1)
D TP T Y

1 Construct a diagram to represent a double-linked list that holds the following sequence

of names:

Kaja, Aiko, Carlos, Fatima 4]

2 The names of a group of people attending a conference were recorded in a stack data

structure. The first name stored in the stack was “Sofia”.

Tariq

Maya

Jasper

Rina

Rafael

Aisha

Zara

Sofia

Note that “Tariq” is currently in position 0 in the stack.

a Compare and contrast the use of a binary search tree and a stack when searching for

a specific item. 2]

b The tree is populated with the data from the stack. By considering only the data

visible in the stack above, sketch the binary search tree that has been created from the

items removed from the stack. 2]

3 Sketch a binary search tree that would allow the following output when traversed using an

in-order traversal:

Zebu, Tapir, Hedgehog, Falcon, Dugong, Bison, Armadillo 2]

4 A hash table has been used to store a company’s current stock. The hashing algorithm

used is:

stock number MOD 100.

a Determine the value returned by the hashing function when it is applied to stock

number 1021. 1]

b Explain how a value is stored in a hash table. []

¢ Describe the steps involved in rehashing. 2]

5 Given two sets, A ={1, 2, 3, 4} and B = {3, 4, 5, 6}, perform the following operations and

provide the resulting set:

a Union 2]

b Intersection 2]

¢ Difference. 2]

B4 Abstract data types (ADTs) (HL)

P
E
—

—
—
—
 e

\ G
-

Case study

Case study

The computer science case study provides the stimulus to
investigate a scenario involving current developments, emerging
technologies and ethical issues in computer science.

The case study for SL is a scenario that includes two challenge questions
that stimulate the required research. The information obtained will prepare
students to answer the questions in this section of the examination.

HL students conduct deeper research into the case study which is
reflected in the extra two challenge questions in the case study for HL,
additional recommended teaching hours and time during paper one.

Adapted from the IBDP Computer science guide

The case study is assessed in section B of Paper 1, as shown in the table below. There is a mix

of short-answer questions and one essay question.

The short-answer questions typically focus on your understanding of the main ideas of the

case study, along with the terminology contained within. The command terms for these

questions are words such as define, identify, outline and describe. The last page of the

case study contains a list of terminology that is specific to the case study, over and above

the terminology of the course, which the IB will expect you to be familiar with in your

exaIn responses.

The essay question is where you demonstrate the depth of research-based understanding you

have gained about the topics presented within the case study. The essay question is worth half

the marks of section B of Paper 1. The marking criteria for the essay question are fixed and are

provided later in this chapter.

W Case study key information

Standard Level students Higher Level students

Recommended teaching time allocation 15 hours 30 hours

Proportion of Paper 1 exam 12 of 50 marks (24%) 24 of 80 marks (30%)

in the examination

Marks for the essay question 6 marks 12 marks

"Challenges faced” research prompts that form 2 4

the basis of the essay question

Approximate working time for the essay question | 18 minutes 36 minutes

Responding to the case study
Here is a suggested approach to understanding and researching the issues surrounding the

case study, and preparing for exam questions on it. Use this as a starting point and then

modify it to your personal approach to learning.

Case study

C1 Case study

H Step 1: Understand the text of the case study

B Read the case study. Highlight and identify key points.

B Prepare definitions for the terminology list provided at the end of the case study.

B Quiz and test yourself and your peers on terminology definitions and introductory concepts.

H Step 2: Understand the technology in the case study
The case study will involve field(s) of emerging technology not otherwise covered by the

course syllabus.

B Identify resources such as video lectures and technical articles that provide an overview

and introduction to the technologies present in the case study.

B Prepare notes based on those technologies from the resources you found. Ensure you have

a good understanding of how the relevant technologies work. You will not have to include

any programming code as part of a case study examination question, but you should have a

good working technical understanding of the issues.

B Step 3: Consider the scenario of the case study in its
proper context

Now, with your renewed understanding of the technologies within the case study, give the

complete scenario another careful read.

B What is the case study really about?

®m Identify the big issues of the case study.

B What is interesting about the case study?

u ‘What is confusing?

H Step 4: Consider the challenges of the case study
For each of the challenges identified within the case study:

B Research any background information on the challenge so you have an appreciation of

its relevance.

B Why is this a challenge in the scenario presented?

B What are the implications of not being able to meet this challenge?

B Whart are some potential solutions to the challenge?

It is recommended to produce a revision document that contains a summary of the issues and

technology pertinent to each of the challenges.

B Step 5: Consider the relevance of the challenges beyond the
case study

Research and identify real-world examples of the challenges. Add these examples to your

revision document from the previous step. This step is crucial as it will empower you to refer

to other, real-life examples relevant to the case study when writing your exam responses,

thereby helping you demonstrate meaningful research.

B Step 6: Review for exam questions

The essay question will be based on one or more of the challenges that are identified at the

end of the case study document.

Brainstorm potential examination questions that focus on the challenges.

Write practice essays for each of the challenges faced. Prepare a bullet-point list of key

points to convert into revision index cards in the lead-up to the examinations.

Swap practice essays with a friend and provide feedback based on the essay question

marking criteria provided below.

Suggested strategies for case-study research
1 Use generative Al to read the case study and have it prepare a summary of issues for each of

the challenges. An example prompt might be: “Given the case study on the theme of [CASE

STUDY THEME], prepare explanatory bullet points on [CHALLENGE FACED].” Then,

perform a literature review to determine the accuracy of each of the assertions made by the

AL (Do not accept the responses of the Al at face value!)

Arrange with your classmates to present to or peer-teach each other about the various

challenges, and then take questions from your class. Your confidence when answering

those questions will help identify areas you need to research further.

Read major research papers and publications relevant to the case study so you can speak

about developments in the field with authority. Refer to the papers that discuss those

developments as you speak.

Cornell University runs the arXiv.org service, which is an excellent starting point: “arXiv

is a free distribution service and an open-access archive for nearly 2.4 million scholarly

articles in the fields of physics, mathematics, computer science, quantitative biology,

quantitative finance, statistics, electrical engineering and systems science, and economics.

Materials on this site are not peer-reviewed by arXiv” (arxiv.org).

As the chief examiner notes: “Students who read journal articles and complete video

courses on the case study topic have a broader understanding of the concepts. This

additional reading allows students to employ references to real-world examples or research

in the extended response question” (IBDP Computer science subject report, May 2024).

Watch interviews or lectures given by technologists who are working with, or helped

develop, the technology. For example, for the 2023 case study on recommendation systems,

there are many excellent lectures available on YouTube by engineers from Netflix and

Spotify, who discuss in great technical detail how their algorithms work.

Ask your teacher to arrange a class visit to a company or organization that is working with

the technology. Meet with their team and interview them.

Consider, for example, the 2019 case study on computer-aided dispatch systems for

emergency-service vehicles. The author arranged a class visit to a nearby app-development

company that was creating an emergency-services app for the local government. This gave

the students a tirsthand account they could reference in their exam response.

Contact your local universities and ask to speak with professors or research thesis students

who are conducting research in fields of Computer Science that are relevant to the case

study. Most universities have PhD and Masters students conducting research in the fields of

emerging technology that case studies tend to draw upon.

Case study

7 Find relevant connections with real-world usage of the technologies.

For example, for the 2024 case study on rescue robotics, several students discussed the

use of rescue robots in the 9/11 disaster and compared it to the use of rescue robots to

search buildings damaged in the Ukraine conflict. Students were able to evaluate how the

technology had changed in the intervening 20 years.

(;Top tips!

| Know what to expect before walking into the exam. Be sure you understand the structure of

the paper, including the command terms and requirements of each question, particularly the

extended response.

B Depending on the topic, see whether you and your classmates can organize a field trip or a

relevant guest speaker. It would be great if you could refer to some primary research in your

answers (“the time | visited the ...").

B Take five minutes in the exam to plan your extended response before you start writing. Any

extended writing is vastly improved by spending just a few minutes planning.

B Ensure that any assertions you make are fully substantiated and underpinned by

balanced analysis.

B Use appropriate Computer Science terminology throughout your response.

B Arrange with your classmates to present to or peer-teach each other about the various

challenges, and then take questions from your classmates. Your confidence when answering

those questions will help identify areas you need to research further.

B Use generative Al to read the case study and have it prepare a summary of issues for each

of the challenges. Use the generated output to perform a literature review of the summary

to determine the accuracy of assertions it makes. Due to the well-known and documented

issues of hallucinations, do not rely on generative Al outputs without performing an

independent review!

C1 Case study

(;Common mistakes

B |t is very easy to tell when a student doesn’'t know the terminology and is making it up.

Incorrect use of terminology implies poor understanding of the issues, so will considerably limit

the marks you can earn. Do not neglect to have a thorough understanding of the terminology

list provided.

B If you are going to provide a citation in an examination response, don't make it up! As

indicated, the examiners will be broadly familiar with the major papers and publications

relevant to the case study.

m Many low-performing essays only regurgitate the content given in the case study itself. The

exam marker already knows what is in the case-study document; they want to see what

additional insights you can provide from your research beyond the case study.

B Another common error is not to provide a balanced analysis. For a top-band response, you

must be nuanced enough to present multiple perspectives from which you draw a conclusion.

B Pay close attention to the wording of the questions and, in particular, their command terms.

The type of response depends upon the command term, and merely writing down everything

you know is not an effective strategy.

B “Several unofficial online forums have provided questionable information and guidance. You

should research broadly and cross-check information found” (IBDP Computer science subject

report, May 2024).

Essay question marking criteria
M Essay guestion marking criteria for Standard Level students

Marks Description

0 No knowledge or understanding of the relevant issues and concepts

No use of appropriate terminology.

1-2 Minimal knowledge and understanding of the relevant issues

Basic Minimal use of appropriate terminology.

The answer may be little more than a list.

No reference is made to the case study or independent research

3-4 A descriptive response with limited knowledge and / or understanding.

Adequate A limited use of appropriate terminology.

There is some analysis

There is evidence of some research.

5-6 Knowledge and understanding of the related issues and / or concepts.

Competent Uses terminology appropriately in places

There is evidence of analysis.

There is evidence of research.

There is a conclusion.

SL Paper 1 markscheme, page 8

486 Case study

C1 Case study

M Essay question marking criteria for Higher Level students

Marks Description

0 No knowledge or understanding of the relevant issues and concepts.

No use of appropriate terminology.

1-3 Minimal knowledge and understanding of the relevant issues or concepts

Basic Minimal use of appropriate terminology.

The answer may be little more than a list.

No reference is made to the information in the case study or independent research.

4-6 A descriptive response with limited knowledge and / or understanding of the relevant issues

Adequate or concepts.

A limited use of appropriate terminology.

There is limited evidence of analysis.

There is evidence that limited research has been undertaken.

7-9 A response with knowledge and understanding of the related issues and / or concepts.

Competent A response that uses terminology appropriately in places.

There is some evidence of analysis.

There is evidence that research has been undertaken.

10-12 A response with a detailed knowledge and clear understanding of computer science.

Proficient A response that uses terminology appropriately throughout.

There is competent and balanced analysis.

Conclusions are drawn that are linked to the analysis.

There is clear evidence that extensive research has been undertaken.

HL Paper 1 markscheme, pages 13-14

Analysing past case studies
This section provides a high-level overview of some recent case studies to illustrate the typical

style in which they are presented and the essay questions that may appear as a result.

Additionally, chief examiner feedback on the quality of the essay responses is provided to help

highlight common weaknesses in responses given by students to these questions. You will

quickly notice common themes that echo throughout the examination seasons as you read

those comments. Take the time to learn from the mistakes of those who have gone before you.

B Blockchain (May & November 2020, May 2021)
B Scenario: Based on the mayor of Santa Monica, Pablo, who wants to establish a local

currency, called MONS, that uses blockchain rechnologies.

B Technologies: Technologies referred to include:

digital ledgers

digital signatures

proof of work (mining)

structure of a blockchain

Merkle trees

SHA256. [

I
o
 I

R

B Challenges: There are a number of challenges that are linked to the introduction of MONS;

these include:

O understanding how new blocks are added to the ledger and how the proof of work

prevents malicious nodes from taking over the MONS network

00 understanding how the MONS architecture is scalable and can remain efficient as the

number of users increases

0 understanding the use of cryptographic techniques in the MONS project

O explaining to the Santa Monica citizens how their MONS balance is calculated from

transaction data securely stored in a publicly accessible blockchain ledger

O investigating how the distributed nature of a blockchain cryptocurrency and the

confirmation process may have disadvantages for the citizens of Santa Monica.

B Questions: Essay questions asked include:

[0 Pablo states: “In a traditional banking system, users trust the banks to keep everyone’s

money safe; but with MONS, the whole blockchain, right from the very first transaction,

would be visible to all MONS users, so it is important to be able to explain to citizens

how their money is guaranteed to be safe” (lines 109-112).

With reference to the key technologies, to what extent do you believe the MONS project

will ensure the safety of the residents’ money? (November 2020)

[0 Pablo has claimed that the use of blockchain technology for the MONS cryptocurrency

will mean the cryptocurrency is both secure and scalable.

To what extent do you agree with Pablo? (May 2021)

B Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The majority of responses covered immutability, distributed consensus, cryptographic

hashes, digital signatures, and the 51% attack. Better candidates were able to reference

real-world situations, but most candidates did not. Candidates tended to identity

increasing the blocksize and adjusting the nonce difficulty. Very few candidates had

understood how sharding and layer 2 protocols could assist with scalabiliry.

Many candidates discussed economic and environmental issues with blockchain, rather

than the Computer Science aspects of security and scalability. This approach lacks focus

and detracts from the overall response.

IBDP Computer science subject report, May 2021

B Genetic algorithms (May & November 2022)

B Scenario: Based on the travelling salesperson problem.

® Technologies: Technologies referred to include:

O genetic algorithms:

— population

— selection algorithms

— crossover

— mutation.

B Challenges: There are a number of challenges associated with genetic algorithms;

these include:

0 understanding the role of convergence in genetic algorithms and the factors

affecting convergence

[0 evaluating the use and implementartion of roulette-wheel selection, tournament selection

and truncation selection strategies used within genetic algorithms

00 discussing the different solutions for addressing the failure of simple crossover

strategies for the travelling salesperson problem; in particular:

— why they are necessary

— how they are applied

Case study

— how they preserve the parental traits

— what other possible methods are available

O understanding the advantages and disadvantages of genetic algorithms with respect

to other approaches to the travelling salesperson problem, and to combinatorial

optimization problems in general.

B Question: Essay questions asked include:

[0 To what extent do the characteristics of genetic algorithms make them an appropriate

approach to solving the route optimization problems? (May 2022)

B Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The challenge was to understand the advantages and disadvantages of genetic algorithms

with respect to other approaches to the travelling salesperson problem and combinatorial

optimization problems in general.

The broadness of the question meant that candidates could incorporate information from

the other three challenges. Perhaps, for this reason, many candidates failed to demonstrate

more than adequate understanding of how genetic algorithms can arrive at a successful

solution and this approach’s main weaknesses.

The majority of responses were descriptive rather than evaluative. Many candidates

wrote incorrect statements or did not understand how the different characteristics affect

each other. There were very few proficient responses, and it was rare to see journal

articles referenced.

IBDP Computer science subject report, May 2022

B Quotation: The case study states:

[0 Successful implementations of genetic algorithms strike a natural balance between

exploration and exploitation, and techniques such as simulated annealing can fine-tune

that balance as the algorithm progresses towards convergence (page 7, Discussion).

B Question:

O Discuss the role of convergence in genetic algorithms and how exploration and

exploitation can atfect its success. (November 2022)

B TFeedback: The chief examiner, summarizing the quality of responses to this question, stated:

Some candidates produced excellent answers demonstrating an understanding of how

initial routes, population size, selection method, crossover method and mutation affect

convergence. Proficient answers critically analysed the interplay between these choices and

how they affected exploration and exploitation. Unlike previous case studies, there was no

opportunity to reference real-world situations.

Many candidates only talked about exploration and exploitation in the broadest sense,

failing to identify how they could be manipulated. Some students tried to involve details

from earlier questions, stating the same content without a consistent structure.

Even though there was little opportunity to reference real-world scenarios in this case

study, some candidates referenced research papers when they defined critical terms.

A reference to a relevant, newsworthy article or research paper is recommended for

Question 4. Schools that approach the case study from a research perspective provide

context for students. For example, researching practical applications of genetic algorithms

will increase students’ conceptual understanding and make the topic more engaging.

IBDP Computer science subject report, November 2022

C1 Case study -

Bl Recommendation systems (May & November 2023)

B Scenario: Based on a new application that allows users to view the work of artists who

have yet to be discovered. Artists may include actors, singers, screenwriters, comedians,

painters, sculptors and filmmakers. In fact, any artist who wants to demonstrate a talent

will be able to upload files to the application. The uploaded content can be rated by all

users. Based on their ratings, the application recommends new content to each user.

B Technologies: Technologies referred to include:

0 cloud computing

[machine learning

O recommender systems:

— content-based filtering and collaborative filtering

— k-nearest neighbours

— matrix factorization

— training of recommender systems

— evaluating recommender systems.

B Challenges: To help with this new business venture, called NextStar, there are a number of

challenges that you need to research:

0O understanding the similarities and differences between supervised learning,

unsupervised learning and reinforcement learning

0O understanding how the k-NN algorithm and matrix factorization can be used within

recommender systems

00 understanding how to train, test and evaluate a recommender system

0 comparing content-based filtering and collaborative filtering recommender systems

00 understanding the ethical concerns linked to the collection, storage and use of users’

behavioural data.

B Question: Essay questions asked include:

O “Recommender systems can use content-based filtering, collaborative filtering, or a

combination of both. Hybrid recommender systems combine several machine learning

algorithms.” (lines 43—44)

Discuss the advantages and disadvantages of these different approaches for building a

recommendation system. (May 2023 TZ1)

B TFeedback: The chief examiner, summarizing the quality of responses to this question, stated:

Most candidartes focused on content-based and collaborative filtering, describing their

process with little evaluation. Some candidates stated challenges such as popularity bias,

overfitting and cold start but failed to explain strategies to deal with these issues.

The majority of candidates wrote an adequate response. Few referenced the case study,

and their analysis was on generic movie-recommendarions systems. Often the examples

were YouTube-related rather than NextStar. There were very few proficient responses, and

it was rare to see journal articles referenced.

IBDP Computer science subject report, May 2023 TZ1

B Question:

O Discuss whether the challenges associated with the development of an effective

recommender system can be overcome through the choice of algorithm, training data

and methods of evaluation. (May 2023 TZ2)

Case study

B TFeedback: The chief examiner, summarizing the quality of responses to this question, stated:

The majority of candidates wrote an adequate response. While many referenced NextStar,

often their analysis was on a generic movie-recommender system.

The better responses honed in on the challenges and built their essay around them,

offering ways to address them. These candidates understood that the type of recommender

system might start off simple and evolve over time.

There were few proficient responses. Most candidates failed to structure their essays to

focus on the challenges while explaining the computer science relating to recommender

systems. Very few candidates referenced journals or other sources, and although some

included real-world recommender systems, it was rarely as a comparative analysis.

The broadness of the question troubled some students who tried to include all three areas

and ended up with no depth whatsoever. Their responses were usually descriptive and

lacked any analysis or evaluation.

IBDP Computer science subject report, May 2023 TZ2

B Question:

0 A recommender system that uses a supervised learning K-nearest neighbour (k-NN)

algorithm is selected. Supervised learning algorithms require several decisions to be

made, including setring any hyperparameters, choosing data sets, training and testing

procedures, and evaluation strategies.

Discuss whether the selection and implementation of a k-NN algorithm in the

development of a recommender system will give precise and accurate recommendations.

(November 2023)

m Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

Many students had not researched this topic and wrote basic responses, often copying

several lines from the case study. Even those students who wrote adequate responses often

failed to explore the algorithm beyond describing its operation. Technical terminology

tended to be used appropriately but not expanded upon.

The better responses explored supervised learning, analysed the k-NN algorithms, and

discussed how the recommender system could be evaluated. Weaknesses such as the

cold start problem, popularity bias, and overfitting were considered. Very few responses

considered strategies for overcoming these problems.

There were few proficient responses. However, those were analytical and considered the

question from a broad perspective, even considering data sets and preprocessing strategies.

One or two students referenced journals or other sources.

IBDP Computer science subject report, November 2023

B Rescue robots (May & November 2024)

B Scenario: Based around rescue robots, which are designed to help with the search and

rescue of humans after a disaster, such as an earthquake or tsunami. These robots may

assist the efforts of rescue teams by searching and mapping areas, assessing damage,

removing debris, delivering supplies and evacuating casualties.

B Technologies: Technologies referred to include:

O computer vision

O visual simultaneous localization and mapping (vSLAM)

[pose estimation.

C1 Case study

Challenges: In the development of the new rescue robot, the design team at BotPro face a

number of challenges:

00 understanding how vSLAM navigates an environment with unknown obstacles

and contours

O minimizing the time rescue robots spend scanning and learning an environment

O estimating the pose of people despite varying light and environmental conditions and

body-part or multiple-object occlusion

O updaring existing maps in a dynamically changing environment, such as an earthquake

where rubble is still shifting

00 developing an understanding of the ethical considerations of using autonomous robots

in life-and-death situations.

Question: Essay questions asked include:

00 A governmental department of disaster management is considering deploying rescue

robots made by BotPro that use computer vision technologies for rescue operations in

closed spaces, such as buildings and factories.

Discuss the benefits and costs of deploying rescue robots that use the vSLAM process

and pose estimation techniques to carry out rescue operations in closed spaces.

(May 2024 TZ1)
Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The extended response challenge was to discuss the benefits and costs of deploying rescue

robots that use the vSLAM process and pose estimation techniques to carry out rescue

operations in closed spaces.

Most students focused excessively on ethical points, such as the safety of deploying robots

rather than human rescue teams. When technical concepts were mentioned, this was done

without any depth. Few students referenced information beyond the case study, giving

the impression that little research had been conducted.

IBDP Computer science subject report, May 2024 TZ1

Question:

O vSLAM algorithms are designed to operate in GPS-denied or GPS-degraded

environments. Rescue teams in these environments cannot rely on GPS tracking.

BotPro wants your opinion on whether rescue robots installed with vSLAM algorithms

will be effective when looking for injured or unconscious people in an emergency

situation, such as a factory fire. Such emergencies are time critical.

Evaluate the effectiveness of robots that use vSLAM algorithms to find casualties in an

appropriate timeframe. (May 2024 TZ2)

Feedback: The chief examiner, summarizing the quality of responses to this question, stated:

The better responses provided a balanced account, displaying that the effectiveness of rescue

robots can vary depending on several factors, including the environment, resources available,

computational complexity, the quality of the sensor data and the complexiry of the search

area. Moreover, they demonstrated an awareness of factors such as battery life, availability of

factory blueprints and operational time. Proficient responses provided real-world examples

of situations where rescue robots had been deployed and referenced research papers.

‘Weaker responses either focused on the ethics of deploying rescue robots or merely listed

the technologies without describing or evaluating them

IBDP Computer science subject report, May 2024 TZ2

Case study

44444 -
.)_)" T T T T T

4444

i *

{0 444444

3 _.\\\\‘_'_‘lm

Internal assessment

Internal assessment

4 Solution: the

documentation and

video submitted by

the student for the

internal assessment.

The internal assessment is a summative task for you to showcase your Computer Science

skills and prowess. It is marked by your school teacher and moderated by the IB, prior to

contributing to your final grade for the course. The IBDP Computer science guide provides these

details on the internal assessment:

The internal assessment requires the student to identify a problem of their own
choice and develop a software solution using the computational thinking process.

Adapted from the IBDP Computer science guide

For Standard Level students the internal assessment is worth 30 per cent of your final grade,

and for Higher Level students it is worth 20 per cent of your final grade.

For all students, it is recommended that 35 hours of teaching time is allocated to work on the

internal assessment. According to the IBDP guide, this time includes:

B time for the teacher to explain the requirements of the internal assessment

class time for students to work on the internal assessment component and ask questions ||

m time for consultation between the teacher and each student

|| time to review and monitor progress, and to check authenticity.

IBDP Computer science guide

M The internal assessment can earn up to 30 marks, spread over five criteria

Criteria | Title Marks = Recommended word count | Extras

A Problem specification | 4 300

B Planning 4 150 Diagrams

C System overview 6 150 Diagrams

D Development 12 1000 Video (max 5 minutes in length;

format: MP4, AVI, WMV

E Evaluation 4 400

Choice of problem
Making a wise choice of the problem you will tackle is critical, as the rest of the internal

assessment flows from that. Don't rush into a decision without consulting closely with your

Computer Science teacher. The IBDP guide states:

In identifying a problem, the student can select to apply to the problem
any topic in computer science that interests them. It does not have
to be directly related to the specified themes in the syllabus.

The problem chosen should require a software solution with sufficient complexity
to be commensurate with the level of the DP Computer Science course. It
should also require sufficient innovation for the student to demonstrate their
organizational skills, algorithmic thinking and ability to code their algorithms.

IBDP Computer science guide

Internal assessment

4 Product: the

completed software

only (in the internal

assessment).

(;Top tips!

Choice of problem

Some general advice from the authors:

The programming language and choice of technologies you use in preparing your product are

not constrained to either Python or Java. You may use whichever language and technologies

you deem to be the best fit for your product. Also, you may choose to develop a new

computational solution: a standalone application; a computer or mobile game; an interactive

website with a connection to a database; a mobile application; or even add functionality to an

existing product. You should demonstrate problem-solving techniques combined with the use

of data structures, logic conditions and data manipulation (via file processing or databases)

using either a procedural or OOP approach.

Some examples of inappropriate products, from the IBDP guide, are:

m the development of a programming product using only copied code

B the development of a website (product) using a web-based template that determines its

structure and layout

m the use of exemplar products or templates provided with software such as the Northwind

database in MS Access

B a copied computer game without major moditications to the code that have been

properly documented

® aproduct that does not meet the ethical requirements outlined in the ‘Requirements and

recommendations’ section of the IBDP guide

B a computer / mobile application created using a builder / wizard / drag and drop tool

without the need for code development.

IBDP Computer science guide

Addirionally, examples of weaker products identified by IB moderators in the annual subject

report for the previous version of the syllabus, which are still relevant to this version of the TA,

include:

B Java programs that mainly focus on GUI and not on actual functionality

Java programs that consist of one class only |

B Java programs consisting of a Greenfoot template with only two methods overwritten

B Rudimentary versions of freely available games (like Sudoku)

| ‘Websites that are template-based (Wordpress, Wix or Weebly) or that have minimal content.

IBDP Computer science subject report, May 2016, page 2

m Do not confuse a “large” project with a "complex” one.

An example of this going wrong is creating a project that

B Choose a problem that you are 80 per cent confident

about being able to solve. This allows a good mix of

confidently being able to deliver on what you set out to

achieve, with a little bit of a stretch for you to challenge

yourself with and learn something new through your IA.

[0 A problem you are 100 per cent confident about

from the start is probably too simple to allow for

high grades.

[0 A problem you are only 50 per cent confident about

means you are trying to do more than is realistically

feasible for your current skill set and available time. There

are likely too many unknowns that could trip you up.

C2 Internal assessment

requires 10+ different GUI screens. One or two screens

is enough to demonstrate you have the skill to create

it; the rest is repetitious and wasted effort (from the

perspective of the marking criteria).

While on the subject of GUI screens, user interfaces

generally do not require much algorithmic skill, so don't

focus too much on the user interface itself beyond

proper use of input validation techniques. Similarly,

writing HTML or CSS does not, by itself, demonstrate

algorithmic thinking.

(;Top tips!

m When selecting a problem, ask yourself where you will

have the opportunity to showcase your understanding of

both algorithmic thinking and data structures. When you

consider the criterion D marking criteria, you will observe

it is largely driven by algorithms, and by extension data

structures. That said, your use of various algorithms and

data structures must make sense in the context of your

project — artificially forcing an algorithm into a project

in a manner that appears contrived will not satisfy

the criteria.

Higher achieving products will typically have some

technical complexity (being demonstrated through

algorithms or data structures) beyond that learned

through the course syllabus. Remember: the course

guide allocates 35 hours of class time to this IA and,

while it is an assessment, all assessments are also

learning experiences. The IB does not intend for you

to go through 35 hours of class time without learning

anything. Seek out new skills to learn and implement in

your |A.

To contrast the previous statement, however, do not

attempt a scenario that requires technical abilities

beyond your capabilities. You should not introduce

unnecessary complexity if a simpler solution is at hand.

Simple code is elegant code.

Do not neglect the importance of the documentation

and video. Under the previous syllabus, it was very

achievable for a product of moderate complexity to

achieve a 7 overall on the basis of excellent, thorough,

detailed documentation. Likewise, too many technically

outstanding and brilliant products have ended up

with low grades because students spent all their time

programming and neglected the written work. As the

IBDP Computer science guide states:

“Whichever problem and form of solution a student

chooses, it is essential that the student explicitly

demonstrates and documents their algorithmic

thinking skills.”

You are not constrained to the content of the syllabus in

selecting a problem. In fact, the Guide specifically states:

“the student can select to apply to the problem any

topic in computer science that interests them. It does

not have to be directly related to the specified themes in

the syllabus.”

Project ideas and inspiration
The following overviews are projects that the authors’ students have had success with. All of

these projects received a post-moderation grade of 7 (27+ points). While aspects of the projects

would need to be adapted for the updated syllabus, they are still instructive and valuable for

illustrating the variety of projects with which students can find success.

The authors wish to express their appreciation to these former students for their willingness

to have their projects shared in this book. Several of the example diagrams that appear in later

sections of this chapter are also from these former students’ IA projects.

Internal assessment

B Mushroom: Friend or foe?

C2 Internal assessment

Il Mushroom: Friend or foe?
by H Ng, used with permission

This project aims to develop a mobile application to assist users in identifying mushrooms.

The app will utilize a machine learning model trained on a North American data set to

determine whether a mushroom is edible, based on its features. The app will also provide

educational resources to help users learn more about mushrooms. The goal is to create a

user-friendly and informative tool for mushroom foragers.

Key technologies and techniques

® Machine learning: Classitication models (e.g. logistic

regression, decision trees) for mushroom-edibility

prediction

B Python: Programming language for machine learning

model development

® Java: Programming language for Android app

development

® Graphical user interface (GUI): For user interaction and

data input

m Server—client architecture: To separate the machine

learning model and the mobile app

B Data structures: JSON to represent mushroom features

and model predictions

m Error handling: To handle unexpected inputs or

errors gracefully

® Web development: Flask framework for building the

web API

B Mobile app development: Techniques for creating

Android apps, including layout design, resource

management and testing

Bl Automated grading tool
by a former student, used with permission

o
o
l
 R
l

oL
)

P
P
E
E
P
P
P
E
O
O

(
o
X
o
J
o
X

Jo
Jo
X

 J
oX
oX
o)

b
@
@
@
@
@
@
@
@
@

B Automated grading tool

This project aims to develop a web-based application to automate the grading of multiple-

choice assessments. The application will use Optical Mark Recognition (OMR) to identify

student answers from scanned images and compare them to a model answer sheet. Key

features include automatic scoring, test saving and a user-friendly interface. The goal is to save

teachers time and improve the efficiency of the grading process.

Key technologies and techniques

B Web development: Flask framework for building the web application

B Optical Mark Recognition (OMR): Techniques for identifying marked areas on

scanned images

Computer vision: OpenCV library for image processing and analysis

Python: Programming language for overall implementation

SQLite database: For storing user data and test results

User interface design: Creating a user-friendly interface for uploading images, viewing

results and managing tests

® Error handling: Implementing mechanisms to handle potential errors during image

processing or data storage

B Data structures: Using appropriate data structures to represent test data, scores and

user information

B Image processing: Techniques for preprocessing images, such as thresholding and

noise reduction

B Server-side scripting: Handling user interactions, processing image data and updating

the database

Internal assessment

C2 Internal assessment

Hl ASL (American Sign Language) interpreter
by Jared Xin, used with permission

Live Streaming - e to append, backspace to delete and f to add space

M ASL (American Sign Language) interpreter

This project aims to develop a web-based application to facilitate communication between

hearing and deaf individuals by providing real-time translation of American Sign Language

(ASL) into text. The application will use machine learning and computer vision techniques

to analyse hand gestures and predict the corresponding ASL letters. Key features include a

user-friendly interface, live video-streaming and accurate translation. The goal is to improve

accessibility and communication for the deaf community.

Key technologies and techniques

Web development: Flask framework for building the web application

Machine learning: Algorithms for predicting ASL letters from hand gestures

Computer vision: OpenCV library for image processing and hand detection

Python: Programming language for overall implementation

Webcam integration: Techniques for accessing and using the user’s webcam

User interface design: Creating a visually appealing and user-friendly interface

Real-time processing: Ensuring efficient processing of video frames for real-time translation

Data structures: Representing hand shapes and predicted letters

Error handling: Implementing mechanisms to handle potential errors during image

processing or model prediction

Model training: Training the machine learning model on a data set of ASL signs

B Accuracy evaluation: Evaluating the model’s performance and making improvements

B Vacation route planner
by Edward Zhang, used with permission

Boutw Larefon, ke Kngoom Cambralge, Unde) Lagonm boParmpton, Wrsie Kegdom = A% Unted Ningiom + {arBif Linted ngdon > s Ui Sngaon + Bemaghom.
Ut g = Wrestum, Uraed Sgecr # | wevjos, Unmed g > Prewnn, msed Gegeom * Lansster, Lseed Dngiiom = Wareheses, Unted Rngaom - Srerte Lineed e >
VO Urvied IG00W M Unaed Kirgior

Total arew wee 155 howr

T Lot 15 Ot rBAR 350 wenmh

M Vacation route planner

This project aims to develop a web-based application to assist users in planning multi-

destination vacations. The application will allow users to input locations, generate optimized

routes and view detailed information about each location. Key features include efficient route

planning, location suggestions and mobile compatibility. The goal is to simplify the vacation

planning process and provide users with personalized recommendations.

Key technologies and techniques

Web development: Flask framework for building the web application

Mapping: Leaflet.js library for interactive maps

Routing algorithms: Travelling salesperson algorithm to calculate the most efficient routes

between locations

Location data: APls to access and process location data using OpenStreetMap AP1

User interface design: Creating a user-friendly interface for inputting locations, viewing

routes and interacting with the map

Error handling: Implementing mechanisms to handle potential errors during data

processing or API requests

Data structures: Representing locations, routes and other relevant data

Mobile optimization: Ensuring the application is compatible with mobile devices

Deployment: Using PythonAnywhere for deployment and hosting

Server-side scripting: Handling user interactions, processing location data and

generating routes

Internal assessment

H IBDP subject recommender
by Sofia Cornu, used with permission

R] - -] x

E

M |BDP subject recommender

This project aims to develop a desktop application that will allow students to input

information such as their subject interests, career aspirations and recent grades to receive a

recommendation of which subjects they should choose for their IB diploma. The solution will

take into account IB subject requirements and the school’s timetable scheduling,

Key technologies and techniques

C2 Internal assessment

Java programming language

JavaFX GUI

MySQL database to hold the school’s timetable

Excel file containing IB subjects that are recommended for different career paths, converted

to JSON for easier use

Unique algorithm: Developed to give students suggestions for their IBDP choices based on

the data input

B Stock-trading predictor
by a former student, used with permission

AAPL Share Price

S
h
a
r
e
 P
ri

ce

N

N

Q
o

Y
]

o

[=
]

.
L

— Actual Prices

—— Predicted Prices

180 1

T T

0 S0 100 150 200 250 300
M Stock-trading predictor

This project aims to develop an Al-powered tool to assist in making more informed stock-

trading decisions. The tool will use a long short-term memory neural network to predict stock

prices based on historical data. The Al models will be trained individually for each stock and

saved to the user's computer. The program will feature a simple GUI with minimal Ul elements

and will provide error handling for invalid inputs. The tool will also allow users to retrain

existing AT models.

Key technologies and techniques

Al Long short-term memory neural networks for stock-price prediction

Python: Programming language for implementation

yFinance API: For accessing stock data

Tkinter: For creating the GUI

matplotlib: For displaying graphs

Machine learning libraries, e.g. TensorFlow or PyTorch: For neural network training

and implementation

Internal assessment

Hl D&D battle map generator
by Tom Chan, used with permission

e DOre o] AP DAC ARATE T ‘®

r

Purky Generaron

Ploce Cells

M D&D battle map generator

This project aims to create a desktop application that generates custom battle maps for

Dungeons & Dragons. The application will feature a user-friendly interface, allowing users

to customize maps easily with various textures and elements. The goal is to provide a quick

and etficient solution for creating unique battle maps. Key features include procedural map

generation, texture import, and easy saving and exporting.

Key technologies and techniques

Python: Programming language for implementation

PySimpleGUL Front-end framework for creating the user interface

PIL (Pillow): For image processing and rendering

Procedural generation algorithms: To generate structures, paths and hazards

Algorithms: Breadth first search, A* path finding, recursive back-tracking

Data structures: OOP to represent the map, rooms and paths

Texture mapping: To apply textures to the generated map

File I/O: For saving and loading maps

Image export: For exporting maps as png, jpeg or pdf

C2 Internal assessment

B Music art creator (Visuca)
by Anjali Bhimani, used with permission

M Example Visuca output

This project aims to create a desktop application that will generate a poster based on the

musical elements of a song. The application will request the upload of a csv file with the

musical element details and will have instructions for the user to convert their song of choice

into a csv file. The application will then take into consideration the musical elements to create

different posters that vary based on shape, pattern and colour intensity. The poster designs

will change based on the client’s song choice, so the deconstructed musical elements are

represented as a ‘visual display’.

Key technologies and techniques

Python: Programming language for implementation

Streamlit: Front-end framework for creating a user interface

Librosa: Python library for extracting music data from MP3s

Vega-Altair: Python library to create visual output

Algorithms: Unique algorithm to display the music data visually

Data structures: OOP to hold music data for individual tracks, lists and Panda data frames

File 1/0: Text files and Pickle library to import and export data

Internal assessment

C2 Internal assessment

B Network airlines (file transfer system)
by Eladio Hosseinpour, used with permission

B Metwork Aiines - x

User has been selected.

Would take user to the send dialog to send

the files to the users currently selected.

M Network airlines (file transfer system)

This project aims to create a file transfer system that downloads files from one computer to

another on the same network, through the ethernet — which connects devices on the local

network — rather than the internet, so the data can travel directly between computers on the

same network rather than having to be uploaded and downloaded, which is inefficient.

Key technologies and techniques

Java: Programming language for implementation

JavaFX: Front-end framework for creating a user interface

Multi-threading: To boost the efficiency of the application

Asymmetric encryption: Ensuring transmission security

Recursion: Used for searching directories and sorting data

Algorithms: Network scanning

Data structures: OOP to hold file data and user information

Submission requirements
There are three files that will be submitted at the conclusion of your internal assessment: the

documentation, the video and the appendices. Briefly, the role of each is as follows:

l Documentation
B Submitted as a single PDF file

m Should contain five separate sections, one for each criterion

m Total word count must not exceed 2000 words (not including code excerpts, comments

or diagrams)

B The overall word count should be clearly written on the cover page.

H Video
Maximum length of five minutes

Submitted in a commonly used file format such as MP4, AVI or WMV

Demonstrates the full funcrionality of the product

Demonstrates examples of the testing strategy used in the development of the product.

B Appendices
B Submirted as a single PDT file

® Must include the full source code and other resources developed that are referred to in

the documentation

B While appendices are not used as evidence for the awarding of marks, and examiners are

not required to read them, solutions that do not include an appendix with full source code

cannot be awarded tull marks for techniques demonstrated in criterion D.

Criterion A: Problem specification
The Guide provides the following information on criterion A:

The problem specification is the starting point of the solution and
must be used as a basis for the development of the product.

The student should have the necessary technical skills, access to appropriate
hardware and software and the availability of relevant data to address the problem.

B The success criteria identified in the problem specification (assessed by criterion A) will be

used in the planning (assessed by criterion B), in the development (assessed by criterion D)

and in the evaluation (assessed by criterion E).

B The recommended word count for this criterion is 300 words.

M Criterion A assesses the problem specification (4 marks)

Marks | Description

0 The response does not reach a standard described by the descriptors below.

1-2 Outlines a problem scenario.

States limited success criteria.

Outlines the nature of the solution in 8 computational context.

3-4 Describes the problem scenario in terms of its measurable sclution reguirements.

States appropriate success criteria.

Explains the choice of computational context for the solution

Internal assessment

Clarifications:

Problem scenario: The problem scenario is a clear description of the problem, including its

measurable solution requirements. The description should relate directly to the problem,

whether this be in the world around us, in other fields of knowledge or a current issue

in computing.

Success criteria: These are measurable outcomes derived from the solution requirements

that indicate the successful development of the product.

Computation contexts: The computational context is the specific area of computing that is

selected to be used in the solution.

(;Top tips!

Criterion A

1 Use the SMART technique to be as specific as possible

with your success criteria (Specific, Measurable, Achievable,

Relevant, Time-bound).

2 Use technical language in your success criteria (in the

correct context). Vague, generic success criteria are unlikely

to score marks.

3 Ensure you are not just recreating a clone of an existing

app, such as a game. There must be an original idea,

IBDP Computer science guide

Are there existing computational solutions and,

if so, why are they not effective? What are

their shortcomings?

Why is it valuable or significant to construct a

computational solution for the problem?

Are there any time or resource limitations or

specific conditions?

IBDP Computer science teacher support material

Examples of good success criteria include:
with an element of innovation, to your project. Be sure to [0 The solution will be able to input, edit and delete

articulate what sets your project apart from all the others. customer records from the customer database.

The IB provides some questions that may help: [0 The solution will give appropriate warning messages

O What is the current situation? to the user in case of extreme or invalid input.

[0 Who is affected by the problem? O The solution will be menu-driven with eight menu

O What causes the problem? choices (including an indication of the choices).

[0 What are the objectives or general requirements for Examples of inadequate success criteria include:

the computational solution? The code will compile.

O Are there any constraints associated with The code will run without crashing.
the problem?

(;Common mistakes

Criterion A

o
o
o
a
o

The code will use loops.

The program will be aesthetically pleasing.

1 Criteria for success that do not actually make reference to the core functions of the

proposed solution (for example, creating a task manager without any mention of the core

functions associated with being a task manager): This will always imply there are key criteria

absent from this list. If you are designing a game, include some aspects of the game-play in

your CfS — it will make your testing far easier.

2 Make sure your success criteria are testable and not subjective: A success criterion such

as “The Ul should look good” is not suitable, as it is vague and subjective and people may

disagree on the outcome.

3 Your success criteria have a key role in later assessment criteria: You will design

tests for them, and evaluate your project based on them, so ensure your success criteria

meaningfully summarize the core functional requirements for your project.

C2 Internal assessment

B Checklist for criterion A

B Problem scenario:

[0 The purpose, or idea, inspiring your problem solution has been clearly identified

and described.

O Explicitly relates to one of: the world around us; another field of knowledge; or a

current issue in computing.

00 Measurable solution requirement(s). What is the essence or core functionality for your

project? Summarize the purpose of your project here in a way that can be objectively

measured, and then expand on it in the success criteria.

® Computational context:

0 Clearly identify your choice(s) of computational context. This may include:

— Language environment — which programming language will you use and why? What

are any potential flaws or weaknesses with this choice and how are they not a factor,

or how have they been mitigated?

— Software environment — specific operating systems, libraries, frameworks to be used.

Justify your choice.

— Hardware environment — specific components or computing infrastructure to be

used/required. Justify your choice.

— Data environment — format, structure, size and source of the data you will be using

or generating; any database engine you may use.

— Implementation environment — system configuration, network conditions, security

constraints, resource availability and compatibility requirements.

00 Explain and justify why you have chosen these computarional context(s).

0 If you have not yet finalized your choices, you can identily the options you are

evaluating and what your guiding concern may be in making a choice. Be sure to

identify this as a research task in your criterion B planning.

00 You may consider using a table such as the one below to help structure your

computational context.

M Table to help structure your computational context

Context Chosen Alternatives considered | Justification

Main language Java Python Because ...

Hardware environment

Libraries / frameworks

0s

Data environment

B Success criteria:

0 Related to the problem scenario previously described

Clearly measurable, with precise language

Testable

Achievable and feasible within the constraints of your skills and time available

The sum of the success criteria will indicate successful development of the product

8 to 10 in number

O
O
0
0
o
0
0
O
a
0
o

Should be application-feature focused rather than what programming techniques will

be used.

®m 300 words.

Internal assessment

C2 Internal assessment

B Examples for criterion A
These are based on two of the projects outlined in the ‘Project ideas and inspiration’ section,

reworked for the updated assessment criteria.

Vacation route planner

Based on the project by Edward Zhang

Problem scenario:

As a frequent traveller, I've struggled with planning multi-destination vacations, particularly

across different countries. Existing tools like Google Maps and Tripadvisor lack the

functionality to effectively sequence travel routes and offer limited customization, presenting a

significant challenge in the travel and tourism sector. This problem highlights a gap in current

computing solutions concerning data handling and real-time optimization for personalized

travel planning. My project shall consist of a weh-based application thar allows users to select

different cities and landmarks they wish to visit, creating a “tour” as a list of destinations. The

application shall use route optimization and personalization features (such as travel method)

to generate recommended itineraries.

Computational contexts:

The proposed solution is a web-based travel-planning application using Flask for back end

operations due to its simplicity and effectiveness in managing routes and endpoint setups,

and the ease with which it allows use of Python for back end funcrionality while using web

technologies for a modern, stylish front end. The front end will utilize HTML for structure,

CSS for styling and JavaScript for functionality, while incorporating the Leaflet js library

for advanced interactive mapping capabilities. This stack was chosen to ensure broad

compatibility across devices, essential for real-time travel use. The combination of ITML/

CSS/1S is industry standard for UT and there is plenty of documentation available to assist in

creating the front end with these tools. The application will be hosted on PythonAnywhere

due to its tooling being specifically designed for hosting Python projects with ease, in contrast

with setting up a VPS with AWS or similar. This setup provides the flexibility needed for a

personalized, dynamic travel-planning tool that meets the needs of myself and my friends.

Word count: 257

Success criteria:

The project will be considered successful if it meets the following criteria:

1 Generates a near optimal route (with respect to estimated travel time) connecting user-

selected locations, starting and ending at user-specified points, using the travelling

salesperson algorithm.

Displays the calculated route within 10 seconds for up to 15 locations.

Accurately recognizes and suggests locations based on partial or non-English inputs.

Provides interactive map functionalities with detailed markers and route segments.

Integrates with APIs to ensure accurate and current routing and location data.

Displays clear error messages for unreachable locations or invalid inputs.

Alerts users to input locations before attempting route planning.

[-
-
B
N
 I

-
N

¥,
 [

-

VY
 I
y
 N

]

Manages user inputs effectively, preventing entry of more locations than supported and

prompting corrections.

9 User interface designed for mobile phone browsers, specifically the current version of

iPhone Safari.

IBDP subject recommender

Based on the project by Sofia Cornu

Problem scenario:

As students entering the International Baccalaureate (IB) Diploma Programme, my friends

and I are challenged by selecting subjects that align with our interests, career goals and IB

requirements, while avoiding timetable conflicts. This relates to the world around me as it

directly affects the planning of my future education through the ability to combine personal

preferences with logistical constraints. The current manual approach, reliant on individual

counselling, is inefficient and inadequate. Highlighting problems in educational logistics and

computing, such as data integration and user personalization, there’s a clear need for a digital

solution that systemarically addresses these challenges, enhancing educational planning

through advanced computational techniques.

As such, T will create a solution that allows aspiring IB students to enter previous report

grades, and personal preference data, from which the solution will generate a proposed subject

enrolment that is personalized for the student. The solution will also ensure the proposed

subject enrolment is compatible with the school’s IB timetable offerings and blocking structure.

Computational contexts:

The application will be developed using Java due to its robust static typing system, which

reduces bugs and enhances performance. Java's compatibility with Javal’X makes it ideal

for creating a user-friendly desktop environment that operates seamlessly across multiple

operating systems. Data management will be handled using a MySQL server, facilitating

real-time updates and secure storage of timetable and student information. This approach

leverages Java's capabilities for complex data structures and secure, scalable application

development, addressing the specific needs of educational administration and compliance with

educarional standards.

Word count: 248

Success criteria:

The application must meet the following criteria to be considered successful:

1 Personalization: Users can input personal interests, career goals and academic

performance. The application will recommend subjects based on these inputs.

2 Scheduling integration: It accesses the school's timetable data to ensure recommended

subjects do not clash.

3 Compliance with IB requirements: Ensures the proposed subject combination is valid

for the IB Diploma, including the correct level distribution (three Higher Level and three

Standard Level subjects).

4 User interface: Features a graphical user interface (GUT) that allows for easy input of

personal information using text boxes, check boxes and drop-down menus.

5 Flexibility: Includes a feature for selecting optional group 6 subjects and considers

‘Environmental and Social Sciences’ as applicable to multiple groups.

6 Security: Only authorized personnel (e.g. the IB coordinator) can alter timetable settings,

secured via password protection.

7 Cross-platform compatibility: Functions on both Windows 10 and MacOS, aligning with

the technology available to the students.

Internal assessment

Criterion B: Planning
The Guide provides the following information on criterion B:

The planning of the product must be consistent with the problem specification in criterion A.

B This criterion assesses how the problem scenario has been decomposed into

component parts.

m The plan should address the requirements of the solution, in terms of the success

criteria, and include a proposed chronology for the steps involved in planning, designing,

developing, testing and evaluating the solution.

B A plan can be presented in different forms, but diagrams such as Gantt and Agile charts

can effectively support the planning process.

m The plan may include the allocation of time toward conducting research into code libraries,

frameworks or other tools that may be suitable for the project.

The recommended word count for this criterion is 150 words.

M Criterion B assesses the planning (4 marks)

Marks | Description

0 The response does not reach a standard described by the descriptors below.

1-2 Constructs a partial decomposition of the problem scenario

Constructs a plan that addresses some of the success criteria of the solution.
® Common = :

c t k 3-4 Constructs a reasonable decomposition of the problem scenario.

mistakes Constructs a plan that addresses the success criteria of the solution

Criterion B

1 Producing

diagrams

that are not

technically

accurate: For

any diagram you

produce, make

sure it complies

with the standard

for that type

of diagram.

Plans that

are later

contradicted

by the solution

submitted, for

example if the

plan states you will

use Microsoft SQL

but you then end

up using SQLite.

Missing areas

of the design

cycle, for example

not showing any

evidence of testing

being carried out

on a component.

C2 Internal assessment

Clarification of planning:

B Decomposition is the breaking down of the problem scenario identified in criterion A

into smaller, more manageable sub-problems or components. The decomposition can be

effectively constructed using diagrams.

B A reasonable decomposition breaks the problem down into essential components that

support the construction of a plan.

IBDP Computer science guide

GTop tips!

Criterion B

1 Show you have carried out the design cycle for each sub-problem / component (planning,

designing, developing, testing and evaluating).

2 There are multiple tools to facilitate decomposition, for example:

[0 The general solution can be documented by a use case diagram together with flowcharts,

dataflow diagrams or equivalent.

[0 For procedural coding, it may be good to use a flowcharting tool to break down a

complex task into modules.

[For object-oriented coding, it is important to identify and describe the objects in the

problem scenario.

[0 A database project would require the identification and description of the data and

processing required.

IBDP teacher support material, page 76

3 The plan should take into account the order of tasks, the timeline for their completion and the

resources needed to complete the individual tasks. This is also a time when any research that is

required can be planned for.

B Checklist for criterion B

Decomposition

B Each of the success criteria from criterion A has been identified within the

decomposition process.

B You may use a table or bullet point format. Alternarively, a structure chart with short

comments underneath can be a useful means to articulate the different sub-parts of your

problem (see example).

B Optionally you may also include a high-level overview of some key logic (such as a

flowchart) or your data structures (such as an OOP relationship diagram). If included,

these are “big picture” only as detailed design diagrams occur in criterion C.

Planning

B The plan should address all five stages:

O Planning

— May include relevant research required for completion of the product {e.g. code

libraries, frameworks, algorithms)

Designing

Developing

Testing

O
o
o
o
a
n

Evaluating

B Cach of the sub-parts identified in the decomposition should be shown to have time

allocated within your plan for designing, developing, testing and evaluating.

B Time limits and resources are considered to assign realistic timeframes and needs.

B You may, optionally, use planning diagrams such as a Gantt chart to present your planning

(see the example).

®m 150 words.

The IB offers this useful reminder:

Note that the plan is not a process journal. While an Agile approach

is encouraged, the planning stage of the documentation should not

be written after the computational solution is completed.

B Example for criterion B

The following example has been constructed for a hypothetical, personalizable Pacman clone

game. Remember that, at this stage, you are only decomposing and planning your problem.

These diagrams will not necessarily retlect the final version of your solution.

Project: Pacman clone

Decomposition

For my Pacman clone project, I have decomposed the problem into five main objects of Game,

Map, Entity, Player and Ghost, as modelled in the UML relationship diagram that follows.

Additionally I have decomposed the core functionality of the project according to the structure

chart that follows (brief descriptions of each category follow the structure chart).

Internal assessment

C2 Internal assessment

Game l#————contains —— Entity

T P
has Extends Extends

Map Player Ghost

M Class relationships UML

Structure chart identifying the key components of the decomposed project:

Pacman clone

' v v !
Game Player Map Ghost Scoring

management management management management system

Game Avatar | -PI Load maps | || Movement Load high

initialization strategy scores

Movement L] Map

—-{ Load settings control navigation Random Display

genera‘tor hlgh scores

> set difficulty | Collision
check A-star Save score

->{Main game loop function fpdates
Map

(e e &S progression Collision check

Update game state

Render graphics

~»| Game end

M Structure chart

Further descriptions of the key components in the structure chart:

B Game management: This module handles the core loop and initialization, making sure the

game starts and ends appropriately.

B Player management: Manages everything related to the player character, from avatar

customization to handling movements based on keyboard inputs.

B Map management: Responsible for loading different maps and managing elements within

them, including transitioning between ditterent ditficulty levels.

B Ghost management: Controls the ghosts’ behaviour, utilizing an A-star algorithm for

pathfinding and deciding their movement strategy based on the current difficulty level.

B Scoring system: Manages the scoring, including calculating scores based on game events

(e.g. eating fruits) and handling high scores’ storage and retrieval.

Gantt chart:

e 2410 202411
0 F ek Mame i

“ = - - " » o « » w

" intiad plaing]

- It iy

1 * Game manspenart

§

Do - Ciarmm rutsshastion

n Durvniiass - Wiser: i iy

£ Darvsion - Giame enc

5 Tost

" Evshiste

T * Lap management

" P

1" Dasign

b Do « Lossel mags

) vt - bians navgation

n Dhrenitas - Mgt programsan

- Darvaion - Colison desction

k) Toat

= Evshuste

i = Piayer management

[} P

" Dessign !

5 Dirvsicnp - Awalar

» Drimion - Mrwarmsil conernd

8 Tout

w Evmune

] = Gnost managemens

] P

e Dasign

= Eleeiog: - Mcrwarrors

& Dot - Parnaom genan

e Deveicn - A-siar huncten

F Toat

o [

1] * Sooring dyttem

= Pl

= Diegrt

= Darvniop - Load ngh scores

£ Oweriop - Disglay rgh wcores

- Dervwiog = Lipdate soores

n Teat

n Evwuate

a FRagrwion Mg

- Progact wewuston

W Gantt chart, illustrating the planning, designing, developing, testing and evaluation of each of the key components identified in the

decomposition process and shown in the structure

Internal assessment

Criterion C: System overview
The Guide provides the following information on criterion C:

The system overview of the product must be consistent with the problem specification in

criterion A, and the planning in criterion B.

B The system overview should include a system model with the key components; their

relationships; the rules governing their interaction; and the algorithms required by these

components and the user interface.

B The system overview should have the clarity to enable a third party to re-create the product.

B The system model should provide the information for a viable testing strategy.

The recommended word count for this criterion is 150 words.

B Criterion C assesses the system overview (6 marks)

Marks | Description

0 The response does not reach a standard described by the descriptors below.

1-2 Outlines a limited system model

Identifies algorithms for the components of the system model.

Identifies a testing strategy for at least one success criterion

3-4 Constructs a system model that is not complete.

Constructs algorithms for the components of the model that lead to partial functionality of the

product.

Outlines a testing strategy that aligns with at least three success criteria.

5-6 Constructs a complete system model.

Constructs algorithms for the compaonents of the system model that enable the product to

perform

Describes a testing strategy that aligns with the success criteria.

System overview clarificarions:

m A system model consists of diagrams that include the components of the system and how

they are connected. The system model will include the design of the User Interface. A

complete system model does not include the algorithms for each of the components.

B Algorithms can be presented in different forms, including natural language, flowcharts or

pseudocode, and should address the individual components of the system model.

m The testing strategy refers to a systematic approach for evaluating whether the

computational solution works as intended. The testing strategy should ensure that code

functions correctly and handles unexpected or incorrect inputs. This can be represented

effectively in a table with proposed test data and expected outcomes.

IBDP Computer science guide

C2 Internal assessment

(;Top tips!

Criterion C

1 Testing strategies should be explicitly identified for each of

your criteria for success. Functionally test and verify that

your software functions according to requirements. Test

that the range of inputs and outputs aligns with expected

behaviour.

Mever trust the user! As discussed in A2.4.3, user inputs

should always be validated before being used for any

calculations or algorithms. Common validation methods for

user inputs include:

[0 Presence check: Has a value been input?

O Length check: Is the input an acceptable length

(minimum or maximum length)?

[0 Type check: Does the input correspond to the

correct data types: integer, float, absence of illegal

characters?

[0 Format check: Have any complex formatting rules

been correctly applied (such as dates, times or

currency)?

(.-Common mistakes

Criterion C

3 Validate your inputs by supplying expected and unexpected

input values to test how your software responds. Normal

data, boundary data and erroneous data inputs should all

be tested. Remember that the guiding principle for this

assessment criteria in the Guide is:

the system overview should have the clarity to
enable a third party to re-create the product

Does your response provide that level of clarity?

Recommended diagrams:

O Ul - mandatory

[0 ERD (normalized) — if you have a database

O Data dictionary — if you have a database or persistent

file storage

O UML diagram — if you are using OOP anywhere

00 Component design diagram — if you have any physical

hardware components

O Rules of engagement, attack surface mapping — if

you have networking involved

O Flowcharting — for procedural code.

1 A lack of design thinking being applied to your solution: If you have genuinely

decomposed your problem scenario, there really shouldn’t be blocks of code hundreds of

lines long (in criterion C, this could present as pseudocode that is overly long). This could be

interpreted as a lack of effort to adequately think through and decompose your problem into

abstractions such as classes or functions. The presence of variable names such as personi,

person2, person3 may be interpreted as something that could have been better designed

with an array.

2 Avoid any technical errors in your diagrams (for example flowchart diagrams that have

two arrows coming out of a non-decision element).

3 Tests not actually relevant to achieving the proposed solution (likely linked to poorly

devised success criteria): Things like “starts up within 10 seconds” or “does not crash”, instead

of genuinely testing functionality, such as “successfully adds record to the XXX table of the

database when a message is received”.

Internal assessment

Functional testing:

testing concerned with

the behaviour of the

application - specifically,

whether it meets the

requirements specified.

This type of testing

evaluates the software

by providing inputs and

examining the outputs,

without considering

how internal systems

work. You are testing

each of the success

criteria on the whole

application from the

user's point of view.

Structural testing:

testing concerned with

the internal workings

of the application —

based on the code

structure and internal

pathways. This type

of testing requires an

understanding of the

codebase and is used to

ensure that all aspects

of the code are properly

tested. You are testing

that all conditional

branches execute

correctly, and all error-

handling code triggers

when needed and

responds appropriately.

C2 Internal assessment

B Checklist for criterion C

System model — holistic overview:

A system overview presents key components, their relationships and the rules governing

their interaction. Some appropriate tools to facilitate this are:

[0 Procedural coding: Flowcharting to break down modules or a bulleted list with

indentarions.

[OOP: UML diagrams that show dependencies between classes.

[Database project: Table designs with normalization and a description of

data dictionaries.

System model — for each component:

Students are expected to show algorithms for key components only. There is no need to

design all components of the system.

O Diagrams for each component, including the design of the user interface.

O Algorithms are not required for all components, but should be provided for those that

lead to the functionality of the product. These algorithms may be presented using either

natural language, flowcharts or pseudocode.

Testing strategies:

Your document should contain two test tables:

1 TFunctional testing table: This table should evaluate the application against all success

criteria, ensuring that the functionality meets user expectations and requirements.

2 Structural testing table (white box testing): This table should rigorously test major

algorithms, using valid, extreme and invalid data to ensure the application performs

correctly under all possible conditions.

Functional testing:

Address all elements of the success criteria.

Structural testing:

[0 Verity the major algorithms function correctly.

O Verify the solution handles unexpected or incorrect inputs and that you have tested the

acceptable boundaries (valid, extreme and invalid data).

Examples for criterion C

The following tables provide a suggested format for documenting your testing strategy:

M Functional testing

Success Test Test Expected outcome

criteria number

1 1 Upload files of different types and sizes All files upload correctly and are resized

to a resolution of 300x300

2 2

3 3 Load the game with a single ghost and Ghost should move to Pacman using a

observe its movement sensible path

4 4

5 5 Run the game, and use the WSAD keys Movements should be

to observe Pacman movement W = up

S =down

A =left

D =right

M Structural testing

or simultaneous key presses

Algorithm | Test Test type | Testdata Expected outcome

{ structure

Uploading Upload files of Valid A mix of PNG and JPG files Image file is correctly

avatars different types of resolutions: uploaded. Post-upload, the

and sizes 100%100 code resizes to a 300x300
500x500 avatar, and saves to internal

x memory for use within the
10001000 game.

2000x2000

Invalid Non-image files uploaded, Error message displayed to

e.g. docx, xlsx, pdf the user with instructions

about permitted image sizes

and types.

Extreme File over 5MB in size, and / or | Error message displayed to

dimensions over 2000x2000 | the user with instructions

about permitted image sizes

and types.

A-star Unit testing on Valid A range of source and target | Unit testing should pass

algorithm the A _ star() coordinates that are valid these tests when expecting

function locations in the maps the correct next closest

coordinate to be returned.

Invalid A range of source and target | Unit testing should fail these

coordinates that are out of checks

bounds / located in & wall /

otherwise not valid locations

in the maps

Extreme Test on: map with no Unit testing should fail these

pathway from source to checks

target; also test with source

and target being at the

same location

User input Use unittest. Valid A mixof W, A, S, D keyboard | Game should correctly

controls mock to inputs process the input.

simulate a range : :
of keyboard Invalid Inputs of other keys Game should ignore the

inputs and input.

combinations Extreme Rapid repeated key presses Game should ignore the

input.

Internal assessment

C2 Internal assessment

B Example diagrams for criterion C

The following are exemplar diagrams of the type that may be commonly included for this

criterion (depending on your project choice).

s

)
-
~

e
[/
-

lnsity

Users

&

=
&

|
M System flow diagram (credit: Hailey Annabelle Loh)

E g #Ionen $puilvers wil
appear on beth pags

M User interface mock-up 1 (credit: Hailey Annabelle Loh)

Internal assessment

C2 Internal assessment

Welems pase Ofih‘rl"a Presay Vnf"""’" boces

How To Wif: seeet Featepss O<)

WELCoME! @t m Aot Cop Shap am gpecy
foa i o4 gk c— =
Mg bygom g Tefew g s

0 Cop colmr P T

we Ha lely’ e
f'J"P' oo Hor — l‘"‘:‘fi';

Jo T Odeer il _rost
Coek e ot — — —=
- @ click Batwr Catmband b mofea

—— ——a

Help =3¢ ‘_/)

e Dwnr s
Cag ihept

Po\‘. "0“’5 L1 Cosical

M User interface mock-up 2 (credit: H Ng)

Query for location data

L
]
e be d

Gag Sudpas

S 5

funhaa

OpenStreetMap [*

Query for route matrix

Location data ’.

External APIs

Route matrix data

B Network architecture diagram (credit: Edward Zhang)

Old User button

Help bution
clicked

Information
about different
mushioom

characterisics.

Y

Back button
clicked

W High-level overview flowchart (credit: H Ng)

Internal assessment

plcokr s 35
L]

=T

o = [3ITS, 3536]

M Decision tree ML model (credit: H Ng)

M User interface with relevant logic side by side (credit: Sofia Cornu)

C2 Internal assessment

Find Answers

Answer sheet

storage i
Mark paper

Test storage

Local storage

[

User
Upload image

Displays test image

Login/Register

Proessed test

Processed

test storage e

Save Data

Retrieve data

Retrieve data

W Data flow diagram (credit: former student)

Game Entity

+ screen: Surface +x:int

+ clock: Clock +y:int

+ map: List[List[int]] 1 +game: Game

_ >
+ pacman: Pacman A S0

+ ghosts: List{Ghost] g + draw)

+ score: int

+__init__() f \
Extends Extends

+ draw_map()

+ is_wall(x: int, y: int): bool

+ is_food(x: int, y: int): bool Player Ghost

+ eat_food(x: int, y: int) + color: Color
+ move()

+run() + last_move: float
+draw()

M Entity relationship diagram

+ __init__(x: int, y: int, game: Game, color: Color)

+ move()

+ random_move()

+ get_neighbours(pos: tuple): List{tuple]

+ draw()

Internal assessment

Students

PK | stu id: int

first_name: varchar

last_name: varchar

birth_date: date

email: varchar

Enrolments

PK | enrolment id: int

“\(}é FK | student_id: int

FK | course_id: int

enrolment_date: date

grade: varchar

Teachers

PK | teacher id: int

Courses

PK

first_name: varchar

last_name: varchar

department: varchar

email: varchar

course id: int

FK

course_name: varchar

course_code: varchar

teacher_id: int

M UML class diagram with relationships

R Navigate through maps

Pacman clone J

Upload avatar

Set difficulty level

Play game

y
<<include>>

¥

View high scores

B Use case UML

C2 Internal assessment

"server": {

SETTINGS.JSON

{
"language": "en",

"timezone": "Asia/Bangkok",

"dateFormat": "dd/mm/yyyy",

"ipAddress": "192.168.1.100",

"apiPort": 8080,

"apiKey": "alb2c3d4e5f6g7hB8igjo"

W Configuration file example

PSEUDOCODE FOR MAIN GAME LOOP IN PACMAN

METHOD run ()

Set game running to True

WHILE game_ running is True

Process events:

If a quit event is detected, exit the game

Clear the screen to the background cclor

Draw the map with walls and food

Move and draw Pacman

Check and handle food consumption at Pacman's position

For each ghost in ghosts array:

Move and draw the ghost

Check collision between the ghost and Pacman:

If collision, print "Game over" with the score,

set game running to False

Update the display to reflect any changes

Control the frame rate with the clock

END WHILE

END METHOD

M Pseudocode example

Internal assessment

C2 Internal assessment

Criterion D: Development
The development of the product must be consistent with the problem specification in criterion

A, the planning in criterion B and the system overview developed in criterion C.

B The video should provide evidence of the functionality and give examples of the testing of

the product.

B The development of the solution should justify the structure of the product and why it is

appropriate, and demonstrate the techniques used to develop the product based on the

algorithms constructed in criterion C. These techniques may include loops, data structures,

existing libraries and the integration of software tools.

B The testing strategy should include testing for correctness, reliability and efficiency. The

testing should be described and justified in the documentation, with supporting examples

seen in the video.

The recommended word count for this criterion is 1000 words.

M Criterion D assesses the development of the product (12 marks)

Marks | Description

0 The response does not reach & standard described by the descriptors below.

1-3 Constructs a product with very limited functionality.

Constructs a product using no appropriate techniques to implement the algorithms.

States the choices made to implement the algorithm

States the testing strategy used.

4-6 Constructs a product that has limited functionality.

Constructs a product using at least one appropriate technique to implement the algorithms.

Outlines the choices made to implement the algorithm.

States the effectiveness of the testing strategy used.

7-9 Constructs a product that has partial functionality.

Constructs a product that uses some appropriate techniques to implement the algorithms.

Explains the choices made to implement the algorithm.

Describes the effectiveness of the testing strategy used.

10-12 Constructs a fully functional product.

Constructs a product that uses appropriate techniques to implement the algorithms.

Evaluates the choices made to implement the algorithm.

Justifies the effectiveness of the testing strategy used.

Clarification of development:

B The implementation and coding of the algorithms: Techniques in the criteria refer to the

process of programming algorithms using code. The documentation should highlight key

elements of code that are important for the efficient functioning of the algorithms. Any

code presented in the solution should include relevant comments, be consistent and be

readable. Code excerpts included in the documentation should be referenced to the full

source code submitted as an appendix.

B Functionality and testing: The video should demonstrate the functionality of the product.

The deployment of the testing strategy and its effectiveness should be described in the

documentation with examples of the testing seen in the video.

IBDP Computer science guide

(;Top tips!

Criterion D

1 The top band for this criterion shifts the focus from explanation and description to that of

evaluation and justification. Why were the techniques you used appropriate? Why did you make

the choices you did when implementing your algorithm(s)?

Why was your method of testing the solution optimal for the context? Show at least three of

the outcomes of your test cases against this area of your application, covering both functional

and structural testing.

Structure your criterion D with subheadings based on the success criteria, rather than as a

narrative telling the history of the development of the solution. For each of your success criteria,

present the case for the most appropriate technigues for completing it and your testing strategy

used for it.

Ensure your video demonstrates testing of your product — not just for expected, but for

unexpected, inputs. The video should also show that the software correctly processes the inputs,

not just by showing the output produced, but by also showing that any internal state changes

of the software have correctly occurred (for example demonstrate that a “save” function does

produce a resulting change in the database).

When taking screenshots of your code to use in your documentation, incdude the line numbers.

This makes it easier for you to refer to sections of your code in your writing.

The IB states that it is acceptable to improve code with GPT, but any use of GPT needs to

be explicitly documented and the improvements need to be properly discussed and justified

Techniques must be recognized to receive marks for development and the choices made must

be discussed

(;Common mistakes

Criterion D

1 A very common issue is having limited discussion that explains why the approach

was selected. Justify why you programmed using the approach taken. There are several ways

to do this, but the best is to contrast against alternative valid approaches and then explain the

rationale of your decision.

Remember your code that is submitted within the appendix forms part of criterion

D. Ensure your code is meaningfully stylized, structured and designed in accordance with the

plans articulated in criteria B and C. One long file with thousands of lines in it, with functions

and mainline code inter-mixed, no use of classes or meaningful modularization, will not likely

score in the top band.

The video is not for showing or explaining your code, but for demonstrating the

functionality of your application based on the success criteria. You only have five minutes; use

them wisely.

Videos longer than five minutes will not score more marks as the moderator will likely

stop watching at the five-minute mark. Anything beyond this will not be considered for

your grade.

B Checklist for criterion D

u Video:

1 Your video addresses the problem described in criterion A.

2 Asingle test-run of the product is often sufficient to demonstrate the functionality, and

then some examples of the testing strategy.

3 Ensure you showcase you have met every success criteria in your video (although full

functionality can be achieved if your product is a working solution to an adequate

problem specification, even if the success criteria have not been fully met).

Internal assessment

B Development document:

4 Identify and address five to seven of your most advanced techniques / algorithms /

data structures:

— Discuss the techniques used to complete them.

— Use screenshot excerpts of your code. Comments should be provided with code to

explain their purpose.

— Discuss alternative solutions you considered, where appropriate. Evaluate

your choices.

5 Evidence of testing:

— Tunctional testing

— Structural testing

— At least three separate test cases included (e.g. valid, extreme, invalid inpur dara)

— Evaluate the comprehensiveness of the testing

— Justify your testing strategy.

For the evidence of testing, it is suggested you reproduce areas of the table from criterion C,

with an additional column for ‘results obtained’. If word count is a problem, you could simplify

the table by numbering the tests in the criterion C table, and then referring to tests by their

number when providing the results here in criterion D.

B Examples for criterion D

Multithreading

ate an E

with a thread

M Multithreading in "Mushroom: Friend or foe?” (credit: H Ng)

Explanation

In the Android application, multithreading is used to perform network operations, like fetching data from

an API, without blocking the main Ul thread. This approach keeps the Ul responsive as network requests are

handled in the background.

Justification

The advantage of this approach is that using separate threads to execute communication with the server ensures

that the task can be completed concurrently in the main thread. As a result, the application stays responsive

even if the request and response process takes a long time. An alternative approach could have been to use

AsyncTask, however this is prone to memory leaks for beginner programmers. Kotlin Coroutines are a new

feature designed to be a simple alternative to thread management, however these are not available for Java

Testing

Structural tests (unit testing) and functional tests were conducted to ensure thread safety and correct data

fetching. Tests under simulated slow netwark conditions confirmed the Ul remains responsive

Links to: success criterion 5

C2 Internal assessment -

Transition: terate over all possible masks, which

represent all subsets of nodes
This is the base case, all other elements in the array are

P sel to infinity - Consider all other nodes *v™ that havent been

msfled)(fl

mask XOR (1 << u). Removes node « from the sel of visited dp{mask XOR (1 << u)]{v] + cost[v]{u]: Total cos! of

nodes in mask reaching node u from the start, having first reached

node v and then traveling from v 1o u

dpimask XOR (1 << u))[v]: Gives the minimum cost of reaching

node v from the start, having visiled the set of nodes in mask The minimum of these two values is then set as the

minus node u new cost to reach u

min_cost is the minimum value from the last row of

the DP array, which contains the minimum costs of
reaching the final node from all other nodes.

end_node is the index of the minimum cost, which is

the last node in the optimal path

Set the initial bitmask 1o all

15 1o represent that all

nodes have been visiled in

the final state of the path.

Check if v is part of the current
mask (subset) and leads o the

oplimal path for "end_node’. If

yes, then it's part of the optimal

route.

Update the mask by removing Set the current "end_node’ to

‘end_node’ from the current 'v' as we move backwards

subset, preparing for the next through the path.

iteration of backtracking.

Internal assessment

M Calculating optimal route in “Vacation route planner” (credit: Edward Zhang)

Explanation

The 2D array dp is used to represent the states of the solution. Each state has a bitmask mask and a position

u. The bitmask represents the subset of nodes visited so far, and the position represents the current node

being processed. dp [mask] [u] stores the minimum cost to reach node u after visiting the set of nodes

represented by the bitmask mask (Datta, Subham). Refer to the screenshots above for a detailed explanation.

Justification

By using bitmask dynamic programming, the algarithm transforms the problem from a brute-farce search of

Q(N!) time complexity to O(N? x 2%), which is feasible for N up to 15 to 20 (Kacar, Kaan). Compared to more

efficient heuristics such as Christofides’ algorithm or the nearest-neighbour heuristic, dynamic programming

always guarantees the optimal solution, while heuristics only provide an approximation (GeeksForGeeks).

An iterative approach was adopted because recursion could lead to stack overflow and increase

computational complexity. The bottom-up dynamic programming approach builds up the solution from

smaller subproblems to obtaining the final answer, which optimizes performance and memory usage.

Testing

Structural testing (with unittest) targeted the correctness of the bitmask operations and the 2D array update

process. Tests showed that all possible states (mask combinations) correctly influence subsequent states.

Functional tests simulated different node arrangements to ensure the algorithm consistently finds the

optimal path.

Links to: success criterion 1

Criterion E: Evaluation

The evaluation of the product must be consistent with the problem specification and success

criteria in criterion A.

The recommended word count for this criterion is 400 words.

M Criterion E assesses the evaluation of the product

Marks | Description

0 The response does not reach a standard described by the descriptors below.

1-2 States the extent to which the success criteria were met.

Describes improvements to the product.

3-4 Evaluates the extent to which the success criteria were met.

Justifies improvements to the product.

IBDP Computer science guide

(;Top tips!

Criterion E

1 The IB suggests that you may wish to include a table that lists all the success criteria together

with an in-depth evaluation that addresses to what extent each criterion has been achieved by

the solution.

2 Ensure you evaluate all of your success criteria individually and specifically.

3 When evaluating your success criteria and justifying the outcome, it is a good idea to refer back

to the tests you carried out as evidence for this outcome.

4 Think of the improvements you would introduce if you were to develop a 2.0 version of your

application. What features would you add?

C2 Internal assessment -

(;Common mistakes

Criterion E

1 A common mistake with evaluation is overly simplistic and repetitive comments {(e.g. “haven’t

run into bugs or errars”). The top band requires you to evaluate, not just state whether each

of the success criteria is met. The Guide defines “evaluate” as “make an appraisal by weighing

up the strengths and limitations”.

2 Examples of inadequate improvements include:

a To indude more colour / more data / more calculations / more functionality (unless very

specifically justified).

b To add more functionality for success criteria that have not been met.

¢ To add a GUI interface for a solution that was developed as a CLI.

d To add functionality that is an essential (but missing) component of a fully functional

solution (e.g. adding payment functionality to a web shop, or permanent storage for

a database).

B Checklist for criterion E

® Evaluation:

1 Evaluate the success of every success criterion.

2 Come to a conclusion: Were the success criteria met, partially met or not met? Justify

your reason for this conclusion, using the results of your tests to help evaluate this.

B Improvements:

1 Improvements should be justified with reference to how they will address the

specific issues.

2 Adequate improvement suggestions should be specific and actionable.

B Examples for criterion E
Keep in mind that these examples are from the previous syllabus that required a client. The

updated IA does not require a client. Rather than referring to your client feedback to evaluate

each of your success criteria, you should refer back to your testing process as much as possible.
M Evaluating success criteria in “Mushroom: Friend or foe?” (credit: H Ng)

Success criteria Visuals Evaluation

The program makes use of The client was able to enter

a graphical user interface to N mushroom features using drop-
Enter Characteristics [)

Nem/. facilitate the input of mushroom down boxes. The inputs that

features using drop-down boxes. - . could be made through the

- v drop-down boxes were all valid

P ’ and were correctly saved in JSON

« string format. When asked if this

AN criterion was satisfied, my client

= replied “absolutely” (Appendix 4).

Internal assessment

M Evaluating success criteria in “Automated grading tool” (credit: former student)

The program can automatically

mark a multiple-choice paper

with above 99% accuracy by

comparing it to the mark scheme.

The program marked 30 out of 30

sample tests correctly. The client

has confirmed that "Under good

lighting conditions, this seems to
work very well” (Appendix A.3).

M Evaluating success criteria in “IBDP subject recommender” (credit: Sofia Cornu)

Application makes use of a

graphical user interface to

facilitate the inputting of personal

information (the user can

input this information through
textboxes, checkboxes and choice

boxes / drop-down select).

All of the data is either input by

selecting from a drop-down select

menu or by ticking checkboxes

(as shown in visuals). My client

stated that he thought the
students found the inputting

process “intuitive” and “quite self-

explanatory” (Appendix E.1).

ek e |

T
—
[
—

E—
I
—

— I

One of the improvements that my client and | discussed was the ability of the application

to save features that had been input into the drop-down boxes, "even if the user were

to go to a different page” (Appendix 4). As of now, the characteristics that have been
entered disappear when the user clicks on the help page. To address this, an array can

be made. When the help button is clicked, the chosen characteristics can be immediately

saved to the array. Then, when the user returns to the “enter characteristics” page, they

can seamlessly continue inputting additional characteristics that will be saved in the

same array. The contents can then be sent to the neural network for processing.

Secondly, my client disliked that the application was "reliant on WiFi” to function. To fix
this issue, the machine learning algorithm could be configured to run independently on

the local system. The appropriate libraries (for example scikit-learn and NumPy) would

have to be set up, and the h5 file containing the machine learning model would be

downloaded on to my client’s phone.

Thirdly, my client suggested that entering 21 characteristics for each mushroom was

“tedious”. To fix this, the importance of each feature could be calculated. A method

to approach this is detailed by Fisher et al. Essentially, the value of a feature should be

randomized and the accuracy of the model computed. This process can be repeated for

each feature, and the ones with the lowest importance can be removed.

Finally, to enhance the educational aspect of the app, functionality can be added to

provide guesses about the mushroom species. This can be achieved by creating a

database that contains the characteristics of 50 common mushroom species. Fach

mushroom in the database would initially have a score of 0. When the user inputs

characteristics, the app can compare them with the characteristics in the database. For
each matching characteristic, the score of the corresponding mushrooms in the database

can be incremented. The mushrooms with the highest scores can then be presented as

guesses for the species of mushroom the user is trying to identify.

M Suggested improvements in “Mushroom: Friend or foe?” (credit: H Ng)

C2 Internal assessment

Firstly, one of the improvements that my client and | discussed in our final interview was

that of taking into account the possibility of “start[ing] the diploma with four higher

levels”, which my client has said is “a conversation that [he has] often”. This could simply

be done by adding another checkbox with this option, which would change the number

of HLs SubjectSelect would pick.

Secondly, as my school has recently created a webpage with "details as to what are

the assessments, what's the difference between Higher and Standard Level” for each

subject, my client suggested that having a link to this website from my SubjectSelect

information page would be “"something that could be really nice”.

Thirdly, another area for extension would be to break down some of the career field

options | give (e.g. Physics, or anything related) into smaller more specific sub-sections,

like “architecture, engineering and medicine”, and “work with people like Mr McArthur

and Ms Edmunds” (my school’s counsellors) to implement the subject requirements for

these careers in Switzerland, as these are, according to my client, the ones “that give

(them) the most problems during the options process”.

Finally, another improvement to the project that | believe would add to its usefulness

for students would be to include a screen that displays the weighting that each subject

obtained (z simple change, as these weights are already all held in an arraylist). This

would allow students to better understand why SubjectSelect chose the subjects it did.

M Suggested improvements in “IBDP subject recommender” (credit: Sofia Cornu)

Frequently asked questions

Bl Academic integrity
The IB provides the following guidance for your teachers when they are supporting you with

this course:

The most important responsibility of all students is that the work they submit

is their own. Students must understand and actively apply concepts related to

academic integrity, such as authenticity, respect for intellectual property, and citing
and referencing according Lo accepted systems. This includes instances where Al
tools were used, such as to refine code. If students researched an existing solution

then this must be clearly referenced and cited in a bibliography. Students must

include the full source code of their solution in an appendix. Excerpts of code
in the documentation should be referenced to the appended full source code.

IBDP Computer science teacher support material

The Guide also states that:

All work submitted to the IB for moderation or assessment must be
authenticated by a teacher, and must not include any known instances of

suspected or confirmed malpractice. Each student must confirm that the work

is their authentic work and constitutes the final version of that work.

IBDP Computer science guide

Internal assessment

Each school has its own academic integrity policy, which takes precedence over the

generalized advice offered here. That said, advice follows below.

B Using programming code from other sources
The use of programming code found through online sources is common in the Computer

Science internal assessment. Sources of code may come from tutorials, example projects on

Github, bug fixes found on Stack Overflow, generative Al, or any number of other sources.

When using code that has come from, or is adapted from, another source, then the equivalent

to an ‘in text’ citation should be provided through the use of an in-code comment. The full

bibliographical reference can then be included in the appendix to your written submission.

Consider the following Javascript example:

Java

// Adapted from "Arrow function expressions" (Mozilla)

// https://developer.mozilla.org/en-US/docs/Web/JavaScript/

Reference/Functions/Arrow functions ;

document .querySelector (" [name='go'] ") . ;

addEventListener ("click", e=»{ i

console.log("You clicked on ${e.target.name}"); i

B Using generative Al
The 1B has updated its academic integrity policy with respect to its views on the use of

generative artificial intelligence tools. It is appendix 6 of the Academic Integrity Policy

document available on the IB’s website.

The overarching ethos comes from this statement:

The IB will not ban the use of Al software. The simplest reason is that it is the

wrong way to deal with innovation. Over the next few years, the use of this kind
of software will become as routine as calculators and translation programs. It is

more sensible to adapt and teach students how to use these new tools ethically.

1B Academic integrity policy, 2023, page 53

From the perspective of how to apply the principle of ethical use of Al in your assessments,

such as the internal assessment, the key statement is:

Students need to be aware that the IB does not regard any work produced — even
only in part — by such tools to be their own. Therefore, as with any quotation or
material from another source, it must be clear that any Al-generated text, image

or graph included in a piece of work has been copied from such software. The

software must be credited in the body of the text and appropriately referenced in the
bibliography. If this is not done, the student would be misrepresenting contenl — as
it was not originally written by them — which is a form of academic misconduct.

1B Academic integrity policy, 2023, page 54

C2 Internal assessment

;:;;iTiQ

i
W

=
 -

“F
ry
ge
d

ey

As an IB student, you will need to keep in mind these points when using Al software:

If you use the text (or any other product) produced by an Al tool — be that by copying or

paraphrasing that text or modifying an image — you must clearly reference the Al tool in

the body of your work and add it to the bibliography.

The in-text citation should contain quotation marks, using the referencing style already in

use by the school, and the citation should also contain the prompt given to the Al tool and

the date the Al generated the text.

IB Academic integrity policy, 2023, page 54

B Standard Level vs Higher Level
The IA is graded the same regardless of whether a student is at Standard Level or Higher Level,

and both levels are graded against the same assessment criteria.

In fact, when IB moderators grade student 1As, they are not aware of whether a student is an SL

or HL student.

B Ethical guidelines
The Guide provides the following ethical guidelines for students completing the IA:

Given the nature of the internal assessment, students must take into account
ethical problems and implications for undertaking research and developing

the solution, for example ensuring the confidentiality and security of data.

Wherever possible, original data should be used or collected by the student.

The following guidelines must be applied:

Consent must be obtained from people who will be involved in the development of the

computational solution before any investigation is begun.

Written consent must be obtained from the owner of any existing system that is to be used

as part of the internal assessment, for example when implementing a security analysis

protocol on an existing system.

All data collected must be stored securely in order to maintain confidentiality.

Data collected can only be used for the computational solution. It must not be used for any

other purpose without explicit permission.

IBDP Computer science guide

Internal assessment

Acknowledgements

The Publishers would like to thank the following for permission to reproduce copyright material.

p- 1 © Eric d'Ario/stock.adobe.com; p. 2 © Oleksandr Delyk/stock.adobe.com; p.5 t © Ahmed Shaffik/stock.adobe.com, m

© Gorodenkoff/stock.adobe.com; p. 6 © Chinnapong/stock.adobe.com; p. 9 t © Siiixth/stock.adobe.com, m © Fdsmsoft/

stock.adobe.com; p. 14 © Ssstocker/stock.adobe.com; p. 16 | @ BillionPhotos.com/stock.adobe.com, r @ Sved Oliver/

stock.adobe.com; p. 17 m © A_A88/stock.adobe.com, b © Capix Denan/Shutterstock.com; p. 18 t © Dmytro/stock.adobe.

com, m © AjayTvm/Shutterstock.com; p. 19 | © Insideportugal/stock.adobe.com, r © Blickpixel/stock.adobe.com; p. 24

t © GRANGER - Historical Picture Archive/Alamy Stock Photo, b © Semenov/Sputnik/Sipa; p. 37 © Photo Researchers/

Science History Images/Alamy Stock Photo; p. 46 © Sueddeutsche Zeitung Photo/Alamy Stock Photo; p. 51 © The History

Collection/Alamy Stock Photo; p. 69 r © Aminul/stock.adobe.com; p. 79 © Syda Productions/stock.adobe.com; p. 80

© Cherezoll/stock.adobe.com; p. 81 © Lito_lakwatsero/Shutterstock.com; p. 93 (I © Pixel/stock.adobe.com, tm © AlexR/

stock.adobe.com, tr © D'Mhnd/stock.adobe.com, bl © Vlabo/stock.adobe.com, bm © QOleksandr/stock.adobe.com, br

© LuchschenF/stock.adobe.com; p. 95 © Monicaodo/stock.adobe.com; p. 111 © Peterschreiber.mediaF/stock.adobe.com;

p- 116 b © Steve/stock.adobe.com; p. 151 © Diki/stock.adobe.com; p. 167 © Phonlamaiphoto/stock.adobe.com; p. 205

© Alexandr Vasilyev/stock.adobe.com; p. 216 both Chart by Tyler Vigen/https:/tylervigen.com/spurious-correlations/

https://creativecommons.org/licenses/by/4.0/; p. 230 I © JT Fisherman/stock.adobe.com, m © Jim/stock.adobe.com,

r © Barry/stock.adobe.com; p. 265 | © SickleMoon/stock.adobe.com; p. 281 © Maximilian/stock.adobe.com; p. 295

© Markus Spiske/stock.adobe.com; p. 372 © Anshuman Rath/stock.adobe.com; p. 393 © Teeranon/stock.adobe.com; p.

453 © Yellowj/stock.adobe.com; p. 481 © Mykhailo/stock.adobe.com; p. 485 © Naret/stock.adobe.com; p. 493 © Tierney/

stock.adobe.com

Acknowledgements

Glossary

Absolute path: the location of a file specified from the root

directory (the full path).

Abstraction: having a higher-level, simplified model to

represent a complex system. It allows you to focus on the core

ideas or concepts that matter, without being overly concerned

about the intricate details of implementation.

Access modifiers: the mechanisms provided by the

programming language to control visibility of methods and

variables within an object.

Accessor: a public method that allows external code to

“access” the value of a private instance variable within an

object; also known as “getter method” as it “gets” the value.

Activation function: a mathematical function applied to the

output of a neuron that is used to determine whether or not

the neuron should be activated (considered to be "on”).

Aggregate functions: functions used to perform calculations

on multiple records based on a given field, e.g. AVERAGE,

COUNT, MAX, MIN, SUM.

Aggregation: where one object “has” another object as

part of it, but the two objects can exist independently of

each other.

Algorithm: a finite sequence of instructions that needs to be

followed step-by-step to solve a problem.

Amplitude: the magnitude of change in a sound wave,

representing the loudness or intensity of the sound.

Analogue: a continuous signal that represents varying physical

quantities, such as sound waves, which varies smoothly over a

range; digital represents data in discrete binary values (0s and

1s), enabling precise and error-resistant processing.

Arithmetic operator: a character that is used to perform

a calculation.

Artificial intelligence: computer technology able to perform

tasks and make decisions in a manner that imitates human

intelligence. There are two main forms of Al: narrow (or weak)

Al is designed to perform specific tasks or solve specific types

of problems; general {or strong) Al processes human-level

intelligence and can operate across a range of domains. While

speculation persists that general Al is “close”, at this time only

narrow Al technology is available.

ASCIl (American Standard Code for Information

Interchange): a character-encoding standard used to

represent text in computers and other devices, defining a

numerical value for each symbol and character commonly used

in the English language.

Assignment: to set, reset or copy a value into a variable.

Association rule: a process of finding patterns of co-

accurrence in data; this means, given the presence of one item

in a record, how likely it is that another item will be present.

Atomic: each attribute in a table containing indivisible values

(values that cannot be broken down into more detailed

sub-values).

Attribute: a data item or a characteristic of an entity; a

column in a table.

Backpropagation: backpropagation of errors is the most

commonly used technique for training artificial neural

networks. The gradient of the loss function is calculated, and

used to update parameters such as weights, in the opposite

direction of the gradient to reduce the overall error.

Base case: a terminating solution (that is not recursive) to

a process.

Basic Multilingual Plane (BMP): the most commonly used

characters and symbols for almost all modern languages.

Bidirectional bus: a bus that can transfer data in both

directions.

Big O notation: used to find the upper bound (worst-case

scenario or the highest possible amount) of the growth of a

function; the longest time or space required to turn the input

into output.

Binary operator: an operator that requires two operands

(values).

Binary search: a method of searching an ordered array (list)

by repeatedly checking the value of the middle element and

disregarding the half of the data structure that does not

contain the searched element.

Bit: binary digit; a single digit, either 1 or 0.

Bitmap: a type of digital image composed of a grid of pixels,

each holding a specific colour value, representing the image in

a rasterized format.

Boolean: a data type to represent one of the two possible

values: true or false.

Boolean operator: a character that represents a specific

logical operation that is used to produce a true or

false outcome.

Computer Science for the IB Diploma

Breakpoint: a marker to interrupt the execution of code for

debugging purposes.

Brute force: a method of breaking a cipher by systematically

trying every possible key until the correct one is found.

Bubble sort: a sorting algorithm that compares adjacent

values and swaps them if they are in an incorrect order.

Buffering: the process of temporarily storing data in a

memory area (buffer) while it is being transferred between two

devices or processes, helping to manage differences in data-

flow rates and ensuring smooth, uninterrupted operation.

Business intelligence: technologies, applications and

practices for collecting, integrating, analysing and presenting

business information.

Byte: 8 bits.

Cache hit: when the CPU requests data and it is found in the

cache memory.

Cache miss: when the CPU requests data and it is not found

in the cache memory, necessitating retrieval from slower main

memeory or storage.

Caching: the process of temporarily storing frequently

accessed data in a high-speed storage area (cache) to reduce

access time and improve system performance by enabling

quicker retrieval of the data.

Cardinality: the maximum number of times an instance in one

entity can be associated with instances in the related entity.

Char: a data type used to represent one single character, digit

or symbol.

Child: any node that has a direct link from a parent node

positioned above it, potentially having further child nodes of

its own.

Classification: machine learning where the output generated

should be a category, chosen from among a discrete set of

categories available.

Classification techniques: where a machine learning

model has been trained to identify, from a predefined list of

categories, which category (or class) the input data would most

likely be associated with.

Cloud database: a database that runs on cloud computing

platforms, providing scalability, high availability and flexible

resource management.

Clustering techniques: where data is grouped into clusters

based on similarity or proximity to each other without any

labels provided to help indicate the correctness of associating

any individual datapoint to the cluster assigned.

Colour depth: also known as "bit depth”; the number of bits

used to represent the colour of each pixel in a digital image,

determining the range and precision of colours that can

be displayed.

Glossary

Comment: a note that explains some code, which will be

ignored at compilation stage.

Composite key: a set of attributes that form a primary key.

Composition: where objects are composed of other objects,

forming a “has-a"” style of relationship. The objects that

comprise the internal objects cannot exist independently of the

containing object.

Computational thinking: a toolkit of available techniques

for problem-solving; its fundamental concepts are abstraction,

decomposition, algorithmic thinking and pattern recognition.

Computer network: a system that connects computers

and other devices to share resources (digital or physical)

and information.

Concatenation: joining strings together.

Conceptual schema: an abstract model describing the

structure of the data without considering how it will physically

be implemented.

Confusion matrix: a simple pictorial means of representing

how well a machine learning model is performing.

Constructor: a special method within a class that is

automatically executed during instantiation; its main task is to

initialize any instance variables required before an instance of

the object can be used by other code.

Convolution: a mathematical operation that combines two

functions to produce a third function. In the context of a

convolutional neural network being used for image processing,

convolution applies filtering functions to the pixels in an input

image to compute distinctive features from the data.

Curse of dimensionality: each feature in a machine learning

model adds another dimension to the overall model the

algorithm is attempting to map and create generalizations

about; the curse of dimensionality refers to the problem

that occurs when there are too many dimensions relative to

the quantity of data available, so that patterns cannot be

meaningfully observed.

Data definition language: language that is used to create,

modify and remove data structures from a relational database.

Data manipulation language: language that is used to add,

madify, delete and retrieve data stored in relational databases.

Data mining: the process of sorting through large data sets to

identify patterns and relationships that can help solve business

problems through data analysis.

Data sparsity: how “spread out” data points are from each

other in a model.

Data storage: storage of data within primary or

secondary memory.

Data type: defines the type of value a variable or data

structure has and what type of mathematical, relational or

logical operations can be applied without causing an error.

Data warehouse: a specialized type of database designed for

analytical purposes rather than transactional processing.

Database: an organized collection of structured information or

data that can be accessed in different ways.

Database schema: an architecture showing how data is

organized and how the relationship between data is managed.

Debugging: finding and fixing errors in a program.

Debugging tools: software applications or utilities used by

developers to identify, analyse and fix bugs or issues within a

program by inspecting code, variables and execution flow.

Decision tree: a graphical representation of conditions that

will result in a classification decision being made; think of it

as a decision-making flowchart that the machine learning

model creates.

Declaration: a language construct specifying the properties of

an identifier.

Decomposition: breaking down complex problems into

smaller, more manageable parts.

Decrement: to decrease a value by another value (usually

by one).

Deep learning: a subset of machine learning that uses an

artificial neural network to imitate the design of the human

brain to find generalizations in complex data that can be used

for decision-making.

Defragmentation: the process of reorganizing the data

on a hard drive so that files are stored in contiguous blocks,

reducing fragmentation and improving access speed and

overall system performance.

Denaormalization: deliberately allowing for data redundancy

in a database design to improve the performance of queries.

Dequeue: a method of deleting an element from the front of

a gueue.

Device drivers: specialized software programs that allow the

operating system to communicate with and control hardware

devices, e.g. printers, graphics cards or network adapters, by

providing the necessary instructions and protocols.

Direct access: a method of access where elements are directly

retrieved by using their index (position).

Distributed database: a database made of two or more

files located on different sites on the same network or on

completely different networks.

Domain name: a human-readable name assigned to a specific

IP address on the internet, e.g. www.example.com.

Double: a data type used to represent a decimal number.

Dynamic data structure: a data structure that can grow or

decrease at runtime, with elements stored in memory locations

that are chained together, but not necessarily contiguous.

Encapsulation: bundles data and the methods that

manipulate that data together into a single object. It serves

to hide the implementation details of the object from

outside code.

Encryption: the conversion of information or data into a

mathematically secure format that cannot be easily understood

by unauthorized people.

Encryption key: a string of characters or numbers used by an

encryption algorithm to encode or decode data. It is the values

that are input into the mathematical functions responsible for

scrambling or descrambling the data.

Enqueue: a method of inserting an element at the rear of

a queue.

Entity: a living or non-living thing that can have data stored

about it that can be described, e.g. a person, a chair or

an aeroplane.

Entity-relationship diagram: a visual representation of the

entities in a database and the relationship between them.

Exception: an unexpected event that stops the execution of a

program, e.g. division by 0.

Exception handling: a process of responding to an exception,

so the system does not halt unexpectedly.

Extract: to gather data from various operational databases,

flat files, APIs, etc.

Factory pattern: a design pattern that provides an alternative

interface for creating objects in contrast to normal constructor-

based instantiation.

Feature: a numeric property that can be used to contribute a

data point for a machine learning algorithm to train on. Think

of it as a variable in your data set.

File extension: a suffix at the end of a filename that indicates

the file type and the program associated with opening or

processing that file (e.g. .docx for Word documents, .jpg

for images).

Firewall: a security system (hardware or software) that

monitors and controls incoming and outgoing network traffic

based on a set of security rules.

First In First Out principle: when the first element inserted is

the first element removed.

First normal form: the status of a relational database in which

entities do not contain repeating groups of attributes.

Float: a data type used to represent a decimal number.

Floating-point division: division in which the fractional part

is kept.

Computer Science for the IB Diploma

Foreign key: an attribute in a table that refers to the primary

key in another table.

Frame: a single image in a sequence of images that makes up

a video or animation.

Full functional dependency: where dependent attributes are

determined by the determinant attributes.

Function: a set of statements that can be grouped together

and called in a program as needed; they always return at least

one value.

Functional dependency: a relationship that exists between

attributes, where one set of attributes (the determinant)

determines the value of the other set (the dependent).

Functional testing: testing concerned with the behaviour

of the application - specifically, whether it meets the

requirements specified. This type of testing evaluates the

software by providing inputs and examining the outputs,

without considering how internal systems work. You are testing

each of the success criteria on the whole application from the

user's point of view.

Gateway: a device that connects different networks together

and manages the traffic flow between them; often used to

connect a local network to the internet.

General case: a process where the recursive call takes place.

Generative Al: a form of artificial intelligence capable

of generating text, images, audio, video and other digital

artefacts, usually in response to a prompt. It is a form

experiencing rapid advances at the time of writing.

Genetic algorithm: imitates the concept of survival of the

fittest and evolution by testing a population of possible

solutions to a problem, using properties from the best-

performing solutions to create a new population of possible

solutions, and then repeating the process until a suitably

performing solution has been identified.

Global variable: a variable that exists throughout a program.

Hash table chaining: a collision-resolution technique in

hash tables where each bucket or index in the array can store

multiple elements in the form of a linked list, allowing more

than one entry to be stored at the same index.

Hashing algorithm: a function that converts input data of

any size into a fixed-size string of characters, which typically

represents the data in a compressed and seemingly random

format and is used primarily for indexing and retrieving items in

databases mare efficiently.

Heap space: a region of dynamically allocated memory

managed by the operating system where programs stare

variables and data structures that require memory allocation

during runtime, allowing for flexible memory usage that can

grow and shrink as needed by the application.

Glossary

High load factors (hash tables): a condition where a sizeable

portion of the hash table’s slots are filled, leading to increased

collisions and potentially degraded performance, due to more

frequent need for collision resolution mechanisms.

High-frequency data: correspond to rapid changes in pixel

values, representing fine details, edges and textures.

Hyperparameter: a parameter (or value assigned to a variable)

that is set before the learning process, which guides the

algorithm as it learns.

Hypervisor: software that creates and manages virtual

machines by allowing multiple operating systems to run

simultaneously on a single physical machine, sharing the

underlying hardware resources.

Identifier: a lexical token that names the language's entities.

Image resolution: the number of pixels contained within a

digital image, typically expressed as the dimensions (width x

height) in pixels, and sometimes as the pixel density (PPl / DPI)

for print quality.

Increment: to increase a value by another value (usually

by one).

Inheritance: where a class takes a copy of an existing class

as the starting point for all its internal methods and variables.

These can then be overridden and extended upon to provide

additional functionality, as required.

Initialization: assigning an initial value to a data structure.

In-memory database: a database that stores data entirely

in the main memory (RAM) rather than on disk, providing

extremely fast read and write operations.

Instantiation: the line of code that declares a new object

variable based on the template code provided by a class, which

then executes the constructor to initialize the object.

Integer: a data type used to represent a whole number.

Integer division: division in which the fractional part

is discarded.

Interface: a contract that specifies a set of methods a class

must implement, without defining how these methods are

implemented, serving as a blueprint that promotes modularity,

flexibility and abstraction in software development. This

structure allows different classes to implement the same

interface in diverse ways, while ensuring they provide the

functionalities declared by the interface.

Internet: a global network of computer networks that are

interconnected with each other and communicate through

standardized protocols.

Interrupt: a signal sent from a device or software to request

the processor's attention; the processor will stop its current

activity until the interrupt has been serviced.

Interrupt handling: handling interrupt requests.

Interrupt service routine (ISR): a special function in a

computer system that automatically executes in response to an

interrupt signal, handling specific tasks, e.g. processing input

from hardware devices or managing system events, before

returning control to the main program.

IP address: a set of numbers that uniquely identifies each

computer based on the Internet Protocol (either version 4 or

version 6).

kHz (kilohertz): a unit of frequency equal to 1000 cycles

per second, commonly used to measure the sampling rate of

audio signals.

K-nearest neighbours: where data points are categorized

based on the categories of the nearest points around them in

the data set; k is a variable representing how many of those

nearest points should be used to "vote” and determine what

category to assign the new value.

Last In First Out or First In Last Out principle: the last

element inserted is the first element removed.

Latency: the delay between the initiation of an action and the

corresponding response, often referring to the time it takes for

data to travel from its source to its destination in a network

or system.

Leaf: a node that does not have any children, representing the

endpoints of a binary search tree’s branches.

Least significant bit (LSB): the rightmost bit in a binary

number, representing the smallest value position (20 or 1).

Linear regression: a machine learning algorithm that seeks

a linear line of best fit for a given data set, from which

extrapolations can be made.

Linear search: a method of searching, in which each element

is checked in sequential order.

Load: to load transformed data into a data warehouse.

Load balancing: the process of distributing network or

application traffic across multiple servers or resources to ensure

optimal performance, reliability and availability, preventing any

single server from becoming overwhelmed.

Local area network: a system that connects computers and

other devices within a small geographical area, such as an

office or home.

Local variable: a variable that exists only within the block of

code where it is defined.

Logic error: an error in a program that makes it operate

incorrectly; it will not crash the program.

Logical schema: a detailed design of the structure of

tables (fields and data types), relationships between tables

and constraints.

Loop / iteration: a repetition.

Low-frequency data: correspond to slow changes in pixel

values, such as broad areas.

Machine learning: a branch of Al where computers learn

from data and experiences to perform specific tasks or solve

specific problems, without being explicitly programmed to

do so.

Maintainable code: clear, easy-to-read and modify code that

can be reused within the same program or in other programs,

by the same or other programmers.

Malwvare: a general term for any software designed with

malicious intent, e.g. viruses, worms, trojans, spyware and

ransomware, which can damage systems, steal data or

disrupt operations.

Matrix and vector multiplications: fundamental operations

in machine learning and graphics that involve complex

mathematical calculations.

Memory dump: a process where the contents of a computer’s

memory are captured and saved, typically for the purpose of

diagnosing and debugging software issues.

Metadata: information that describes other data, providing

context and details about the data's content, structure and

attributes. In the context of digital images, metadata includes

such information as the image's dimensions, colour depth,

creation date, author, camera settings and other properties

that help with managing, understanding and using the

image effectively.

Middleware: software that connects different applications,

allowing them to communicate and share data. It helps

different parts of a computer system work together smoothly.

Modality: the minimum number of instances of one entity

that can be associated with an instance of another entity.

Modularity: a design principle that involves dividing a system

into distinct and manageable sections or modules, each with

its own specific responsibilities, which can be developed,

tested and maintained independently, but function cohesively

when combined.

Monopolize resources: the control or domination of the

use of system resources (e.g. CPU, memory or network

bandwidth) by a single process or user, often to the detriment

of other processes or users, leading to inefficiency or

system slowdowns.

Multi-core architectures: systems with multiple CPU cores

on a single chip, allowing parallel execution of instructions

and tasks.

Mutable: a set whose state or content can be changed after

it has been created, allowing for modifications, e.g. adding,

removing or altering elements within the object.

Computer Science for the IB Diploma

Mutator: a public method that allows external code to update

or mutate the value of a private instance variable within an

object; also known as “setter method” as it “sets” the value.

Network address translation: modifies the IP addresses

of data packets as they pass through a router or firewall; this

helps improve security and manages the limited number of IP

addresses available through IPv4 by allowing multiple devices

to share a single global IP address.

Network segmentation: dividing a computer network into

smaller, distinct subnetworks to improve performance, security

and management.

Network switch: a device that connects multiple other

devices within a single segment of a computer network, only

forwarding data to the specific device it is intended for.

Neural network: a computer algorithm that imitates the

design of the human brain by using a set of interconnected

nodes for the processing and analysing of data.

Nibble: 4 bits.

Node: a basic unit of a data structure, e.g. a linked list or

tree, which contains data and typically links to or references

other nodes.

Noise: unwanted electrical disturbances that can affect the

integrity of signals being processed by a computer; this noise

is not related to sound, but to variations in voltage or current

that can disrupt the accurate transmission and processing of

digital data.

Normalization: the process of organizing data in a relational

database in a way to reduce data redundancy and to improve

data integrity.

NoSQL database: a database designed to handle large

volumes of data and diverse data types, structured differently

from relational databases.

0O(1) time complexity: describes an algorithm that takes the

same amount of time to execute regardless of the size of the

input data set.

Object-oriented programming: a form of programming that

involves creating code for classes of objects, allowing many

such objects to be created from a single code base, achieving

a more modular and extensible software development process.

It is like the idea of producing architectural blueprints, from

which many similar houses can be constructed.

Observer pattern: provides a one-to-many link between

objects to notify objects of changes in state via a subscription-

style service.

Online analytical processing: the software technology you

can use to analyse business data from different points of view.

Open addressing: a collision resolution method in hash

tables where, instead of using structures like linked lists to

store multiple items at the same index, any colliding item is

Glossary

placed into the next available open slot in the hash table itself,

according to a probing sequence.

Operand: a value used in a mathematical expression.

Operator: a character that represents a mathematical,

arithmetic or logical operation.

Outlier: a data point that deviates from the typical pattern of

values in a data set, indicating a possible unusual or erroneous

value that should be discounted.

Overriding: the process of providing a different

implementation of a method in a subclass, which replaces the

original implementation inherited from the superclass.

Packet switching: a method of sending data in small blocks,

known as “packets”, across a network. Each packet can take a

different path to reach its destination.

Parallel arrays: a group of arrays of the same size, where

the element at a given index in one of the arrays corresponds

to another element at the same index in another array, like

descriptions of a single entity.

Parallel processing: the ability of the GPU to perform many

calculations simultaneously due to its highly parallel structure.

Parent: a node that has one or more nodes directly beneath it,

connected by edges, and it directly controls these subseguent

child nodes.

Partial functional dependency: when dependent attributes

are partially determined by the determinant attributes.

Pattern recognition: identifying similarities in the details of

problems.

Perceptron: the data structure at the heart of an artificial

neural network; it represents a single artificial neuron that

takes in multiple inputs and weights, and generates an

output value.

Personal area network: a network for personal devices

within the range of an individual person, usually connected

with Bluetooth.

Physical schema: an implementation of logical schema into a

specific DBMS (database management systemn), showing how

data is stored, indexed or accessed.

Pixel: short for “picture element”; the smallest unit of a digital

image or display, representing a single point in the image with

a specific colour and intensity.

Plug and Play (PnP): a technology that allows the operating

systemn to detect, configure and install drivers automatically

for new hardware devices when they are connected to the

computer, enabling them to work without requiring manual

set-up by the user.

Pointer: a variable that stores the memory address of another

variable, typically used in programming to reference, or access,

the location of data stored in memory.

Polymorphism: meaning “many forms”, it allows objects

to exhibit different behaviours based on their specific class

implementation while still adhering to a shared interface

or contract.

Pop: a method for deleting the element from the top of

a stack.

Primary key: a field that uniquely identifies a record in a table.

Problem specification: a short, clear explanation of an

issue, which may include: a problem statement; constraints

and limitations; objectives and goals; input and output

specifications; and evaluation criteria.

Problem statement: a description of the problem itself,

identification of who the solution is designed for, the issues

encountered and what needs to be solved.

Procedure: a set of statements that can be grouped together

and called in a program as needed; they don't return a value.

Product: the completed software only (in the internal

assessment).

Proof of work: a consensus mechanism requiring

cryptominers to solve complex problems to add a new block to

the blockchain.

Protocol: a set of rules and standards that define how

data is transmitted and received across a network for a

given application.

Push: a method for inserting an element at the top of a stack.

Queue: an abstract data structure that works on the

FIFO principle.

Quicksort: a sorting algorithm that repeatedly selects an

element as a pivot and partitions the other elements into two

sub-arrays (lists): one that includes elements that are smaller

than the pivot and the other one that includes elements that

are larger than the pivot.

Quotient: the result obtained when one number is divided by

another, e.g. in the division of 15 by 3, the quotient is 5.

RAID (Redundant Array of Independent Disks): a data

storage technology that combines multiple physical drives

into a single logical unit to improve performance, provide

redundancy and ensure data protection.

Record: one instance of an entity; a row in a table.

Recursion: a process that uses a function or procedure that is

defined in terms of itself and calls itself.

Regression: machine learning where the output generated

should be a numerical value.

Rehashing: a process in hash tables where the data is

redistributed into a new, larger array to reduce the load factor

and minimize collisions, maintaining efficient performance.

Reinforcement learning: machine learning by trial and error.

Based on what it has learned at any moment in time, the

algorithm selects an action to take in a given environment. The

environment provides feedback (called a "reward”), which the

algorithm will use to learn from and refine its decision-making

process moving forward.

Relational operator: an operator used to compare values

or expressions.

Relationship: a relation established between different tables,

where the foreign key in one table refers to the primary key in

another table.

Relative path: the location of a file relative to the current

folder.

Rendering: the process of generating an image from a model

by means of computer programs.

Root: the topmost node from which all other nodes descend,

serving as the starting point for any traversal or operation

within a binary search tree.

Router: a device that forwards data packets between

computer networks, routing the traffic along the most

efficient path.

Routing: the process of selecting paths along a computer

network to send network traffic, based on the routing table,

network performance and protocols.

R-squared value (or coefficient of determination): a

statistical measure that indicates how well the linear regression

model fits the data points given.

Runtime error: an error that occurs when executing a

program; the program might stop unexpectedly.

Sampling: the process of converting a continuous analogue

signal into a series of discrete digital values by measuring the

signal’s amplitude at regular intervals.

Second normal form: status of a relational database in which

entities are in 1NF and any non-key attributes depend upon the

primary key.

Security tokens: physical or digital devices that generate or

store authentication credentials, such as one-time passwords or

cryptographic keys, used to verify a user's identity and secure

access to systems, networks or online services.

Selection: a conditional statement or decision statement, e.g.

IF, CASE statements.

Selection sort: a sorting algorithm that repeatedly selects the

smallest or largest element (ascending or descending order)

from the unsorted part of the data structure and moves it to

the sorted part.

Sequence: to execute instructions one after another in the

given order.

Sequential access: a method of access where elements are

checked one after another, from the beginning to the end of

the data structure.

Computer Science for the IB Diploma

Server: a computer or device on a network that manages

and provides various network resources on behalf of other

computers (clients) on the network.

Set difference: the difference between two sets is a new

set containing elements that are in the first set but not in the

second set, effectively subtracting the elements of the second

set from the first.

Set intersection: the intersection of two sets is a new set

containing only the elements that are present in both of the

original sets, identifying their common elements.

Set subset: a set where all elements of this set are also

elements of another set, indicating that the first set is entirely

contained within the second set.

Set union: the union of two sets is a new set containing all

the elements that are in either of the original sets, effectively

combining them without any duplicate elements.

Shaders and textures: techniques used in 3D rendering to

apply effects, lighting and details to models.

Shift cipher: a type of substitution cipher, where each letter in

the plaintext is shifted a certain number of positions down or

up the alphabet.

Singleton pattern: a class that is designed only ever to

have one instance instantiated throughout the lifecycle of

the program.

Solution: the documentation and video submitted by the

student for the internal assessment.

Spatial database: a database optimized to store and query

data related to objects in space, including points, lines

and polygons.

Spooling: the process of queuing data or tasks in a buffer,

typically for input / output devices such as printers, so that

they can be processed sequentially and at their own pace,

allowing the system to continue working on other tasks in

the meantime.

Stack: an abstract data structure that works on the LIFO

principle.

Stack pointer: a register used to store the memory address of

the last added data in a stack, or sometimes the first available

address in a stack.

Stakeholder: an individual or groups of people within or

outside an organization who are affected or think they are

affected by a software development project.

Static: methods and variables that belong to the class, not the

individual objects. Only one copy is created that is shared with

all instances in common.

Static data structure: a data structure with predefined fixed

size and elements stored in contiguous memory locations.

Glossary

Statistical redundancy: the repetition of information within a

data set that does not contribute to its uniqueness.

Stereo: a method of sound reproduction that uses two or

mare audio channels to create the perception of sound coming

from different directions, enhancing the sense of spatial depth

and dimension.

String: a data type used to represent a sequence of characters,

digits and / or symbols.

Structural testing: testing concerned with the internal

workings of the application — based on the code structure

and internal pathways. This type of testing requires an

understanding of the codebase and is used to ensure that all

aspects of the code are properly tested. You are testing that all

conditional branches execute correctly, and all error-handling

code triggers when needed and responds appropriately.

Subtree: any node, along with its descendants, functioning

as a standalone binary search tree, with its node acting as

the root.

Supervised learning: when a machine learning algorithm is

provided a data set of pairs of items, where the pair comprises

a value and what response the network should provide if it

sees that value. By learning the answers to the values given,

the network will make generalizations to be able to estimate

the answer when given a previously unseen value.

Table: a structure of rows and columns for storing a group of

similar data.

Tensor: a mathematical term for an array with three or more

dimensions. A single number (no dimensions) is known as

a “scalar”. A one-dimensional array of numbers is known as a

“vector”. A two-dimensional array of numbers is known as a

“matrix”. Three or more dimensions is known as a “tensor”.

Termination condition: a condition in a loop that interrupts

or stops the repetition.

Third normal form: status of a relational database in which

entities are in 2NF and all non-key attributes are independent.

Trace table: a technique used to test an algorithm, and

to predict how it will be run and how values of variables

will change.

Transfer learning: when a previously trained machine

learning model is applied to a similar yet new situation, context

or problem. The goal is to speed up the training process

by using an already trained model, even if the problem is

slightly different.

Transform: to aggregate and transform data into a consistent

format suitable for analysis.

Transitive dependency: a type of functional dependency that

occurs when a non-prime attribute is dependent on another

non-prime attribute, rather than on the primary key.

Trojans: deceptive programs that appear legitimate but carry

hidden malicious code, which can create backdoors, steal data

or cause harm once executed by the user.

Tuple: one instance of an entity; a row in a table.

Unary operator: an operator that requires one single

operand.

Unordered set: a collection of unique elements where the

elements do not have a specific order or sequence and their

arrangement can vary each time they are accessed.

Unsupervised learning: a method of machine learning where

the data set does not include the “answers” or expected

outputs for the data provided. The algorithm will attempt to

discover the patterns on its own.

Unwinding: a process occurring when the base case is

reached, and the values are returned to build a solution.

Validation: a process to ensure input data is sensible or

reasonable.

Variable: a designated memory location that stores a value

that can change during the execution of a program.

Variable scope: the lifetime of a variable within a program;

it determines whether you can access and modify the variable

within a specific block of code.

Verification: a process to ensure input data is accurately

copied from one source to another.

Vertex and pixel data: data used by the GPU to render 3D

objects and images.

View: a virtual table based on the result set of a SELECT query.

They do not store data themselves but provide a way to present

the data from one or more tables in a customized manner.

Virtual memory: a memory-management technique that

allows a computer to use more memory than is physically

available by temporarily transferring data from RAM to

disk storage, enabling the execution of larger programs

and multitasking.

Virtual private network: a secure connection that runs

across the internet to provide private communication between

your network and a remote server.

Viruses: malicious software programs that attach themselves

to legitimate files or programs and spread to other files or

systems, often causing damage or disruption.

Volatile: a type of memory or storage that loses its data when

the power is turned off.

Wide area network: a system that connects computers

and other devices across a large geographic area, usually

connecting multiple LANs together.

Winding: process occurring when recursive calls are made

until the base case is reached.

Worms: self-replicating malware that spreads across networks

without needing to attach to other programs, exploiting

vulnerabilities to infect multiple systems.

Computer Science for the IB Diploma

Index

absolute path 378 searches 362-3, 365 breakpoint debugging 335, 338-40

abstract classes 423-5 sorting 365-7, 369 brute force 36

abstract data types (ADTs) 453-80 tracking item numbers 404-5 bubble sort 365-7, 369

abstraction 284-5, 287, 394, 423-5, 454-5 two-dimensional 347-9, 530-1 buffering 70

access modifiers 401-2 see also lists BufferReader class 383-4

accessibility 74, 78 artificial intelligence (Al) 5-6, 206-7, buses 3

accessors 402 279-80, 288, 502 business intelligence 198
accountability 274 see also generative Al; pervasive Al bytes 25-6

accounting 72 ASCI (American Standard Code for C++ 99-100, 101-2

accumulators (ACs) 3 Information Interchange) 31-2, 476 cache memory 9-10, 70

accuracy 225-6, 234-5, 268, 499 assignment 297, 300-2 Caesar ciphers 35-6

ACID (atomicity, consistency, isolation and association rule 199, 240-2, 269 California housing data set 261-2
durability) 193, 200 atomic 179-80 cardinality 177

activation functions 256-9, 265-6 attributes 168 case studies 481-92

actuators 93 audio 44-6 central processing unit (CPU) 2-16, 67, 70,
aggregation 426-8 Audio Interchange File Format (AIFF) 44-5 72, 79-89, 210-13

algebraic simplification 60-5 auditing 71,73 chaining 477-8

algorithms 285-6, 499-501, 503-5, 515, augmented reality 277 char 298
517-18, 527 authentication 124, 148 characters, storage 31-6

control 94 automated grading tool 498, 533 chargeback 73

design 285-6 autonomous vehicles 95 chatbots, customized 210

fairness/bias 274-5 backpropagation 260 child (node) 267, 466, 470

genetic 248-54, 270, 488-9 backups, secure 1523 CIFAR-10 data set 267

programming 358-77 bandwidth 112, 116, 128, 138-9 classes 397-405, 417-52, 423-5

scheduling 79-80, 82-4 banking 133, 396-400, 406-9, 437 classification 199, 208, 227-33, 262-3,

American Sign Language (ASL) 499 base case 370 268-9

amplitude 44, 45 Basic Multilingual Plane (BMP) 34 client-server models 132-3

analogue 37 Bellman equation 245 closed-loop systems 92, 94-7

analogue-to-digital conversion (ADC) 44 bias 156, 274-7 cloud computing 21-2, 115, 197, 211

Analytical Engine 24 Big O notation 358-61, 363 clustering techniques 199, 236-40, 479

analytics 184 billing 73 code reusability 395, 417-20

anomaly detection 200 binary 24-8 coefficient of determination 225

anonymity 276 conversions 26-30 collabaration 395

append 198, 378, 385 and data storage 31-51 collision factors 477

application management 74 fractions 50 colour depth 37, 38-9

Application-Specific Integrated Circuits gray code 49 comments 297

(ASICs) B, 213 representation of integers 25-8 compilers 103-9

Apriori algorithm 242 signed 47-8 just-in-time (JIT) 105-9

architecture unsigned 47 composite key 169-70

network 127-35 binary search 363-5 composition 426-8
see also database schema; multi-core binary search tree (BST) 376, 466-70 compression 19-21, 44-5, 47

architectures binary semaphore 89-90 computational thinking and problem solving

Arduine 97,100, 101 binary-coded decimal (BCD) 48-9 281-480

arguments 328 BIOS (basic input/output system) 9 computer fundamentals 1-110
arithmetic expressions 355 bitcoin 6, 134 computer hardware 2-23, 210-13
arithmetic logic units (ALUs) 2 bitmap 37-40 computer logic 51-66

Arraylists 3501 bitmasks dynamic programming 530-1 computer operation 2-23

arrays 213, 343-52 bits 25-7, 29, 37-40, 44 computer vision 498, 499

creation 399, 400 BitTorrent 134 computing platforms 210-12

one-dimensional 343-5 blackchain 6, 134, 157, 487-8 concatenation 306-7
parallel 346 Boolean algebra 25, 51, 53-6, 60-6 conceptual schema 174-5
quicksort 3735 Boolean data types 208, 302, 316, 345 concurrency control 171, 200-1

configuration files 526

confusion matrix 234

consent 275

constants 360

constructors 398

control algorithms 94

control systems 67-102, 249

control units (CUs) 2

controllers 92-3

convolutional neural network (CNN) 264-8,

270

cores 4,7, 14-16

cost allocation 72

cross site scripting (XSS) 148

cross-platform development 109, 510

crossover functions 250-4

curse of dimensionality 219

customer loyalty system 443-6

customization 75

cyberbullying detection 280

data 8

and binary search trees 4667

dimensional 219-21

ethics 267

fittering irrelevant 216, 221

grouped 191

high-frequency 21

identifying incorrect 216

improperly formatted 216

integrated 198

location 500

low-frequency 21

metadata 37, 38

missing 216, 221

normalization 216-17, 221

ordering 190

security 201

standardization 216-17, 221

volume of 268

data analysis 287

data cleaning 215-17

data consistency 171, 178, 184, 191, 133,

200-1

data definition language (DDL) 186-7

data duplication 171, 181, 216, 221

data entry 283

data flow diagrams 524

data handling 172, 173

data integrity 124, 171, 174, 179, 183,

193-4

data language types 186-8

data manipulation language (DML) 186,

187-8

data mining 198, 199-200

data normalization 179-83

data partitioning 201

data poisoning 275

data preprocessing 215-22

data redundancy 172, 179, 183-4

data representation 24-51

data retrieval 171, 184

data scraping 267

data sets 220, 261-2, 267, 361, 471

data sparsity 219

data storage 31-51, 67, 2967

data structures 217, 342-57, 471, 497-500,

503-5

dynamic 342, 351-2, 455

hash tables 475-9

static 342, 355

data transmission 136-43

data types 178, 297-9, 453-80

data warehouses 184-5, 197-202

database schema 172, 174-6, 183

database views 191-2

databases 167-203, 517

alternative 195-202

cloud 197

denormalizing 183-5

design 172, 174-85, 287

distributed 200-1

document 195

fundamentals 168-73

graph 196

in-memory 197

key-value 196

managed/self-managed 197

normalized 181-3, 187

NoSQL 195-6, 197

programming 186-94

relational 168-73, 178-81

scalability 172, 174, 183-4, 201

spatial 197

wide-column store 196

DBSCAN clustering 240

deadlocks 90-1

debugging 29, 335-41

decimal numbers 26-8, 30-1, 48-9, 297

decision trees 227, 230-3, 268-9, 523

decision-making 319

declaration 296

decomposition 286, 287, 511-13

decompress 20

decrement 300

deep learning 6, 207-8

defragmentation 69

deletion 456, 459-60, 464-5, 470, 478,

479

dendograms 239-40

deployment 500

dequeue 356

design patterns 428-35

design philosophies 7

device drivers 70

device management 67, 70

Diffie Hellman key exchange 157-8

digital certificates 152-3, 155-8

digital infrastructures 114-16

digital signatures 153

dimensionality 219, 219-21, 268

direct access 342

disk input/output operations 87

DISTINCT in a SELECT statement 188

distributed denial of service (DDos) 146, 150

distributed systems 115

distribution transparency 201

divide-and-conquer principle 373

documentation 506

domain name servers (DNS) 129-30, 163

double (data type) 297

dynamic data structures 342, 351-2, 455

Dynamic Host Configuration Protocol (DHCP)

75, 124-5, 130, 162

Eclipse IDE 338-9

edge computing 116, 211

efficiency 361

elevator control system 94-5

ELSE 314-17

emails 133, 150

embedded methods 87, 218, 221

Embedded MultiMediaCard (eMMC) 17

encapsulation 395, 401-2

encryption 71, 124, 149, 153-8, 505

asymmetric 154-5, 157

encrypted protocols 150

symmetric 153-4, 157

encryption key 154

endpoint-protection 151

engineering 249

enqueue 356

entities 168

entity-relationship diagrams (ERDs) 1747,

524

environmental impact 275

equity 277

errors 29, 106-7, 225, 333, 335-41,

497-500

ethical issues 267, 274-80, 536

evaluation metrics 233-5

exceptions 333-5, 386

excess-N (biased representation) 49-50

execution 11-13, 15-16, 360

extract, transform, load (ETL) 198

F1score 234, 235

factorials 371

factory pattern 428, 433-4

fault tolerance 201

feature selection 217-18, 268

feedback mechanisms 92, 94-7

fetch-decode—execute cycle 11-13, 15

Fibonacci sequence 371-2

fibre-optic cabling 138

tield-programmable gate arrays (FPGAs) 213

file extension 69

file management 69, 74, 78

file processing 378-91

file server 130-1

Computer Science for the IB Diploma

file transfer protocol (FTP) 130

file transfer system 505

FileReader class 383

FileWriter class 382-3

FILTERING 189

filters 218, 221, 264-5

finance 133, 209, 249, 396-400, 406-9,

437

firewalls 118, 144-5, 161

first come first served (FCFS) 79-82

First in First Qut (FIFO) 355

First in Last Out (FILO) 353

first normal form (INF) 179-80, 182

fixed-point representation 50

flight reservation systems 438-9

float 297

floating-point division 303-4

floating-point representation 50-1

flowcharts 288-93, 312, 314-15, 522

FOR loop 330, 345, 350-2, 380

foreign key 169, 171

frames 8, 46

Free Lossless Audio Codec (FLAC) 44-5

functional dependency 180

functionality 527

functions 326-32

gaming 209, 245-8, 269, 287, 355, 422,

512-14, 517-18, 524-6

Gantt charts 514

gateways 117

general case 370

generative Al 206, 484-5, 535-6

genetic algorithms 248-54, 270, 488-9

Gini 231

global query processing 201

graphical user interface (GUI) 73-5, 497

graphics processing unit {(GPU) 5-8, 210-13

gray code (reflected binary code) 49, 62-4

grayscale 42-3, 262-3

hard disk drive (HDD) 16-17, 18, 69

hash table chaining 477-8

hash tables 475-9

hashing algorithm 476, 479

HAVING clause vs WHERE clause 188

health monitoring apps 279

heap space 456

Hello World classification 262-3

hexadecimal numbers 29-31

hierarchical clustering 239-40

high-frequency data 21

high-performance computing (HPC) 212

home-security systems 96

hyperparameter 235

Hypertext Transfer Protocol Secure (HTTPS)

120, 122-3, 132

hypervisor 75

ID values 403-4

identification apps 497, 521-3, 529, 532

identifiers 296

Index

IDLE (Python) 340

if (member) 318

IF statements 311-18

nested 315-16

image generators, customized 210

image recognition 210

image resolution 37

images, storage 37-43

in-memory databases 197

increment 300

information hiding 401-2

Infrastructure as a Service (laas) 22

inheritance 417-20, 422-3

initialization 296

input validation 150-1

inputs 91-2, 255-6, 264, 283, 289-90,

360, 389

insertion 456-9, 462-4, 467-8, 476-7

instantiation 398-400

instruction register 3

integer division 303-4

integers 25-31, 47-51, 297, 394

interface 429-30, 454

internal assessment 493-536

internet 114, 125

interpreters 103-9

bytecode 105-9

interrupt 355

interrupt handling 85-8, 355

interrupt service routine (ISR) 85, 86

intrusion detection system (IDS) 151

intrusion prevention system (IPS) 151

inventory systems 415-16

IP addresses 136-8, 144-5

irrigation control systems 96

Java

and abstract data types 461-6, 471-5,

4767

and binary data storage 33, 36, 41, 43

and data structures 347-9, 350-1

and data types 297-8

and error detection 106-7

and file processing 378-84, 389, 391

and the internal assessment 495, 497,

501, 505, 509-10, 535

and object-oriented programming

396, 398-401, 403-5, 407-9, 41112,

414-16, 418-22, 424, 429-30, 431-5,

439, 442-52

and operators 302, 303

and programming algorithms 358-62,
364, 366-9, 371, 372, 373-4, 376

and programming constructs 313, 314,

316-18, 320-4, 326-8, 330-1

and programming fundamentals 333-5,

343-5

and string manipulation 305-6, 307-10

JOIN in a SELECT statement 188

k-nearest neighbours 227-30, 233, 236-8,
269, 4901

Karnaugh maps (K-maps) 60-5

kernels 264-5

keyboards 86-7, 356

keys 154, 169-71, 468

kilohertz (kHz) 44

knowledge 288

laptops 210

Last in First Out (LIFO) 353, 355

latency 85, 86

leaf (node) 467, 470

learning curves 395

least significant bit 27, 48

length function 305

library systems 414, 440

line of best fit 223-4

linear discriminant analysis (LDA) 220

linear probing 478

linear regression 223-7, 268-9

multiple 226

linear search 362-3, 365

linear space 360

linear transformation 265-6

lists 343-52

dynamic 351-2

linked 455-66

one-dimensional 232, 345-6

quicksort 373-5

searches 362-3, 365

sorting 365-7, 369

two-dimensional 3479

Little Man Computer 11-12

load 198

load balancing 75

load factors 477, 478

local area networks (LAN) 112-13, 134,
141-2

location data 500

location transparency 201

locks 90

logic 51-66

logic circuits 56-9, 65-6

logic errors 333

logic gates 51-66

AND gates 53, 59-60, 65-6, 258-61,

317

and ANNs 258-61

basic 52-4

Buffer gates 52

derived (complex) 54-6

history of 51

NAN gates (NOT AND) 54

NOR gates (NOT OR) 55

NOT gates 52, 54, 60, 66

OR gates 52-3, 59-62, 64, 66, 258-61

XNOR gates (exclusive NOT OR) 55-6

XOR gates (exclusive OR) 55

logical expressions 60-5

logical schema 175

loops/iterations 296, 319-24, 366

conditional

384, 386

count-controlled (FOR) 319-23, 325,

348, 362

post-condition (REPEAT-UNTIL) 319,

323-5

pre-condition (WHILE) 319, 322-5

low-frequency data 21

machine learning 5-6, 205-80, 287-8, 497,

499, 502

mail servers 131

319, 322-4, 362-3, 380,

maintainable code 326

malware 72, 146, 149

man-in-the-middle (MitM) 147

mapping 500, 503

matrix and vector multiplications 5

mean absolute/squared error 225

media access control (MAC) 152

memory 7-11, 67-8, 72, 456, 478-9

primary 8-11

secondary 16-19

virtual 68

memaory address/data register 3

memory cards 18-19

memory dump 29

Memory Hog program 77

metadata 37, 38

method overriding 421-3

middleware 22

misinformation 276

mobile networks 116

mobile optimization 500

modality 177

model evasion/inversion 275

model training 499

modems 118

modularity 326-32, 394-5, 454-5

monitoring 71

monitors 90

monopolize resources 79

motor control system 100-2

mouse 86—7

maovie-review sentiment analysis 270

MPEG Audio Layer lll (MP3) 44-5

multi-care architectures 4, 14-16

multi-valued dependency 181

multidimensionality 226-7

multifactor authentication (MFA) 151

multitasking 89-91, 91

multithreading 529

music art creator (Visuca) 504

mutable 471

mutation 248, 253

mutators 402

mutual exclusion 89

network address translation (NAT)

145

network architecture diagrams 521

Network Attached Storage (NAS) 18-19

137-8,

network communications 87

1719

network interface cards 118

network protocals 119-25, 146

network security 131-2, 138-40, 144-65,

287

network segmentation 134-5

network switches 118-19

network topologies 127-9

networking 75-6, 132-4

networks 111-65

neural networks 207-8, 244

artificial (ANNs) 5-6, 255-64, 266, 270

convolutional 264-8, 270

training 260, 269, 276

neural processing unit (NPU) 212-13

nibbles 29

nodes 455-70

deletion 470

insertion 467-8

search 468

traversal 468-9

noise 25

network devices

non-volatile 198

normalization 179-83, 187, 216-17, 221,

287

NoSQL database 195-6, 197

O(1) time complexity 476

object-oriented programming (OOP) 393-

452, 505, 517

object-relational impedance mismatch 173

objects, creation 399

observer pattern 429, 434-5

one’s complement 48

online analytical processing (OLAP) 198-9

online harassment 276

open addressing 477, 478-9

open-loop systems 92

operands 303

operating systems (0S) 67-102

operators 296, 302-4

optical discs/drives 18

Optical Mark Recognition (OMR) 498

outliers 215, 221

outputs 255-6, 266, 283, 289-91

overfitting 235-6

packet switching 140-1

parallel processing 5

parent (node) 466, 467

partial functional dependency 180

passkeys 150

passwords 149-50

pattern matching 189

pattern recognition 286, 287

peer-to-peer model 133-4

perceptrons 255-7, 258

performance monitoring 72

perfarmance-critical applications 109

personal area network (PAN) 113

personalization 75

pervasive Al 277

phishing 147

physical schemas 176

pipelining 14-16

pivot elements 373

pixels 8, 37-9, 42

Platform as a Service (Paas) 22

plug and play (PnP) 70

pointers 455-64

polling 85-8

polymorphism 421-3

Pong! (game) 245-8

pooling layers 266

pop 353

portability 107-8

positional notation method 26

power efficiency 7

precision 234, 235

predictions 258-9

primary key 169, 179, 180-1

principal component analysis (PCA) 220

print statements 341

printer queues 356

privacy 274, 275, 276, 277

problem description 59-60

problem specification 282-4

problem statement 282

problem-solving 286-8, 470

procedure 326-8

process 289

process accounting 72

processors 212-13

product 495

program counter 3

programming 287, 295-391

algorithms 358-77

constructs 311-32

data structures 342-57

database 186-94

file processing 378-91

fundamentals 296-310, 333-41

see also C++; Java; object-oriented

programming; Python

proof of work 6

proxy servers 131-2, 162

pseudocode 244-5, 526

push 353

Python 83

and abstract data types 461-5, 471-5,

476

and binary data storage 33, 42, 45-6

and data preprocessing 215, 217, 221

and data structures 345-6, 347-9,

351-2

and data types 297-8

and error detection 106-7

and file processing 385-8, 389, 391

Computer Science for the IB Diploma

and the internal assessment 495, 497-9,

502-4, 509

and machine learning 224-7, 229, 232,

237-9, 242, 245-8, 252-4, 260-3, 268

and network protocols 121

and object-oriented programming 396,

398-404, 406-7, 410, 41819, 421-4,

431, 433-4, 438, 441-2, 444-51

and operating systems 77

and operators 302, 303-4

and programming algorithms 358-61,

363-4, 366-9, 371, 372, 374-6

and programming constructs 313-18,

320-4, 326-9, 330-2

and programming fundamentals 333-5,

343

and scheduling algorithms 83-4

and servers 130

and string manipulation 305-10

Q-learning 244-5

quadratic probing 479

quadratic space 360

quantum computing 277

queues 355-7

quicksort 373-5

gquota management 72

guotients 27

R-squared value 225-6

RAID (Redundant Array of Independent Disks)

18, 131

RAM (random access memory) 8-9, 10, 68

randomization, weighted 249

rapid development/testing 109

Raspberry Pi 160-3

read mode 378, 385

read-intensive apps 184

read-only views 191

real-time systems 88, 361, 499

real-world apps 86-8, 133-4, 233, 284,
356

reasoning 319

recall 234, 235

recommendation systems 209, 229-30,

276, 4901

records 168-9

recruitment tools, Al-powered 279-80

recursion 355, 370-7, 505

registers 3

regression 199, 208, 261-2, 268

rehashing 477

reinforcement learning 209, 242-8, 270

RELATIONAL operators 189

relationship 170-1, 175

relative path 378

RelU 257, 258-9

rendering 7, 8

replace method 309

replication 201

reporting 73, 184

reproduction 248-54

Index

resolution 38, 39

resource allocation 89-91

resource contention 89-90

resource management 73

resource usage tracking 72

RGB values 41-2

robotics 209, 249, 491-2

ROM (read-only memory) 8-9

root (node) 466, 469, 470

round robin (RR) 80, 82

route planning 249-51, 254, 500, 509,

530-1

routers 118, 161

routing, static/dynamic 141-2

run-length encoding (RLE) 20

runtime errors 106, 333

sampling 44

scalability 172, 174, 183—4, 201, 361, 395

scanner class 379-82

scheduling 70-1, 79-84, 89

schema, database 172, 174-6

scikit 217-18, 220-2, 224-6, 230, 233,

238-40

searches 361-5

second normal form (2NF) 180, 182

secure file transfer protocol (SFTP) 130

secure socket layer (S5L) certificate 152

security 71-2, 73, 86, 201, 510

and data transmissions 138-40

database 172, 174, 192

and machine learning 275, 277

network 131-2, 138-40, 144-65, 287

server 131, 132

security tokens 71

selection 249, 296

selection sort 367-9

selection structure 311-19

semaphores 89-90

sensors 93, 947

sequencing 311

sequential access 342, 456

sequential pattern discovery 199

server—client architecture 497

server-side scripting 498, 500

servers 129-33, 162

set difference 472, 474

set intersection 472, 473

set methods 472

set operations 472-4

set union 472, 473

sets 471-5

subsets/supersets 475

shaders and textures 5

shift cipher 35-6

Sigmoid 257, 258-9

sign-magnitude 48

singleton pattern 428, 430-2

social media platform 441-3

societal impact 275

Softmax 258

software development 287

Software as a Solution (SaaS) 22

software updates 152

solid state drive (550) 16-17, 18

solution 494

sorting 365-9

space analysis 358

space complexity 360-1, 367

spatial databases 197

spectral clustering 238-9, 269

speech recognition 210

spell checkers 479

spooling 70

SQL 186-91, 193-4, 197

SQL injection 147-8

SQLite database 498

stack 352-5

stack operation 353-4

stack pointer 353

stakeholders 282-3

static variables and methods 402-5

statistical redundancy 19

step-by-step code execution 340

sterea 44, 45

stack-trading 270, 502

Streamify music 449-52

string 31-6, 297, 305-10, 394

strip method 309-10

structure charts 512-13

student apps 409-12, 439, 498, 501, 533-4

subject-oriented 198

subnetting 134

substrings 307-9

subtree (node) 467

summation 256

supervised learning 208, 223-36, 248

surveillance 274

system flow diagrams 519

system management 74

system models 515, 517

tables

database 168-70, 178-9, 188-90

hash tables 475-9

Q-learning 244, 245

see also trace tables; truth tables

tanh 258

TCP/IP (Transmission Control Protocol/Internet

Protocol) model 75, 117-20, 125-6, 1367

Tensor Processing Unit (TPU) 211, 212-13

TensorFlow 260-1

termination condition 322

testing 152, 341

functional 517, 531

strategies 515, 517-18, 527, 529

structural 517, 531

text blocks 305

third normal form (3NF) 180-3

time complexity analysis 358-60

time-variant 198

timetabling 249

Tinkercad 97-9, 100-1

trace tables 335-8

traffic control 96-100, 270

training 152, 260, 269, 276, 499

transaction control language (TCL) 193-4

transaction processing 172

transducers 93

transfer learning 210

transform 21, 198

transistors 51-4

transitive dependency 180, 181

translation 103-10

transmission control protocol (TCP) 119-21

transparency 269, 275-6

transport layer security (TLS) certificate 152

traversal/search 376, 457, 460-2, 468-9

trojans 72

truth tables 52-65

tuning, hyperparameter 235

tuples 168

twisted-pair cabling 139

two's complement 47

UML (Unified Modelling Language) Class

diagrams 397, 427-8, 512-13, 525

underfitting 235-6

UNDO feature 355

Unicode encoding 31, 32-5

unordered sets 471

unpatched software 148

unsupervised learning 209, 236-42, 248,

269

unwinding 370

user accounting 72

user guthentication 71

User Datagram Protocol (UDP) 119-21, 125

user interface 73, 498-500, 510, 520, 523

utilitarianism 185

validation 322

variables 296-304, 360, 401-2

global/local 330-2

static/non-static 402-5

verification 322

vertex and pixel data 8

video 5, 46-7, 506, 527-8

view 191-2

virtual local area network (VLAN) 134

virtual memory 68

virtual private network (VPN) 114, 152

virtual reality 277

virtualization 75

viruses 72

visual feedback 75

visual simultaneous localization and mapping

(vSLAM) 4912

Voice over IP 134

volatility 9

VRAM (video RAM) 7

‘Waveform Audio File Format (WAV) 44, 45

web browsing 133, 355

web development 497-500

web scraping 267

web servers 123, 132, 162

webcam integration 499

weight (neural networks) 255-6

wide area network (WAN) 113

winding 370

wireless access point 119, 161-2

wireless transmission 139-40, 152

workstations, dedicated 211

worms 72

wrapper methods 218, 221

write mode 378, 385

zero-day exploits 148-9

Computer Science for the IB Diploma

Computer Science for the IB Diploma: Boost eBook

Boost eBooks are interactive, accessible and flexible. They use the

latest research and technology to provide the very best experience for

students and teachers.

@ Personalise. Easily navigate the eBook with search, zoom and an
image gallery. Make it your own with notes, bookmarks and highlights.

® Revise. Select key facts and definitions in the text and save them as
flash cards for revision.

@ Listen. Use text-to-speech to make the content more accessible to

students and to improve comprehension and pronunciation.

@ Switch. Seamlessly move between the printed view for front-of-class
teaching and the interactive view for independent study.

® Download. Access the eBook offline on any device — in school, at

home or on the move — with the Boost eBooks app (available on

Android and iOS).

To subscribe or register for a free trial, visit Boosb
hachettelearning.com/boost Learning

FOR THE
IB DIPLOMA
PROGRAMME

Computer Science
Developed in cooperation with the International Baccalaureate®

Trust an experienced team of IB educators to help develop the key

skills needed to understand computer science with a range of

contemporary case studies, practical learning features and

extensive assessment support.

m Build analytical skills with engaging contemporary case studies

from around the world.

m Improve skills and knowledge with end-of-chapter review

questions.

m Build inquiry skills through class discussion questions that foster

international awareness, open mindedness and reflection.

m Integrate Theory of Knowledge into your lessons with TOK links.

m Develop ATL skills with a range of engaging activities.

m Support EAL students with key words and definitions

throughout.

This title is also available as an eBook

with learning support.

Visit hachettelearning.com/boost

to find out more.

@ Visit us at hachettelearning.com
9 7

About the authors

Paul Baumgarten teaches

computer science at Sha Tin

College, Hong Kong.

loana Ganea is a computer

science teacher at St George's

International School,

Luxembourg.

Carl Turland is Head of Design

(Computer Science and

Product Design), International

School of Lausanne.

1036 8

